EINBAU- UND BEDIENUNGSANLEITUNG

EB 8222

Originalanleitung

Pneumatisches Stellventil Typ 3310/AT und Typ 3310/3278 Kugelsegmentventil Typ 3310

Hinweise zur vorliegenden Einbau- und Bedienungsanleitung

Diese Einbau- und Bedienungsanleitung (EB) leitet zur sicheren Montage und Bedienung an. Die Hinweise und Anweisungen dieser EB sind verbindlich für den Umgang mit SAMSON-Geräten.

- → Für die sichere und sachgerechte Anwendung diese EB vor Gebrauch sorgfältig lesen und für späteres Nachschlagen aufbewahren.
- → Bei Fragen, die über den Inhalt dieser EB hinausgehen, After Sales Service von SAMSON kontaktieren (aftersalesservice@samson.de).

Die gerätebezogenen Einbau- und Bedienungsanleitungen liegen den Geräten bei. Die jeweils aktuellsten Dokumente stehen im Internet unter **www.samson.de** > **Service & Support** > **Downloads** > **Dokumentation** zur Verfügung.

Hinweise und ihre Bedeutung

▲ GEFAHR

Gefährliche Situationen, die zum Tod oder zu schweren Verletzungen führen

A WARNUNG

Situationen, die zum Tod oder zu schweren Verletzungen führen können

Sachschäden und Fehlfunktionen

Informative Erläuterungen

Praktische Empfehlungen

1	Allgemeine Sicherheitshinweise	5
2	Aufbau und Wirkungsweise	6
2.1	Sicherheitsstellung	6
2.1.1	Einfachwirkende Ausführung Typ SRP	
2.1.2	Doppeltwirkende Ausführung Typ DAP	
3	Einbau	
3.1	Zusammenbau von Ventil und Antrieb	
3.1.1	Typ 3310-SRP	
3.1.2	Typ 3310/3278	
3.2	Einbaulage	
3.3	Stelldruckanschluss	
4	Bedienung	
4.1	Änderung der Sicherheitsstellung	12
5	Instandhaltung	12
5.1	Antrieb demontieren	12
5.2	Austausch der Stopfbuchspackung	12
5.3	Austausch der Sitzringdichtung	13
5.4	Montage	13
5.5	Austausch von Kugelsegment, Wellen und Lager	15
5.5.1	Demontage	15
5.5.2	Montage	15
6	Änderung der Kennlinie	17
7	Werkzeuge und Anzugsmomente	18
7.1	Sonderwerkzeuge	18
7.2	Anzugsmomente	19
7.2.1	Anzugsmomente für Flanschschrauben	19
8	Typenschild	21
9	Zubehör	22
10	Technische Daten	23
11	Rückfragen an den Hersteller	23

1 Allgemeine Sicherheitshinweise

- Das Stellventil darf nur durch fachkundiges und unterwiesenes Personal unter Beachtung anerkannter Regeln der Technik eingebaut, in Betrieb genommen und gewartet werden. Dabei sicherstellen, dass Beschäftigte oder Dritte nicht gefährdet werden.
- Die in dieser Anleitung aufgeführten Warnhinweise, besonders für Einbau, Inbetriebnahme und Wartung beachten.
- Die Stellventile erfüllen die Anforderungen der europäischen Druckgeräterichtlinie 2014/68/EU. Bei Ventilen, die mit einer CE-Kennzeichnung versehen sind, gibt die ausgestellte Konformitätserklärung Auskunft über das angewandte Konformitätsbewertungsverfahren. Die Konformitätserklärung steht unter http://www.samson.de zur Ansicht und zum Download bereit.
- Zur sachgemäßen Verwendung sicherstellen, dass das Stellventil nur dort zum Einsatz kommt, wo Betriebsdruck und Temperaturen die bei der Bestellung zugrunde gelegten Auslegungskriterien nicht überschreiten. Für Schäden, die durch äußere Kräfte oder andere äußere Einwirkungen entstehen, ist SAMSON nicht verantwortlich!
- Gefährdungen, die am Stellventil vom Durchflussmedium und Betriebsdruck sowie dem Stelldruck und von beweglichen Teilen ausgehen können, durch geeignete Maßnahmen verhindern.
- Sachgemäßer Transport und fachgerechte Lagerung des Stellventils werden vorausgesetzt.
- Beim Einbau und bei Wartungsarbeiten am Stellventil sicherstellen, dass der betroffene Anlagenteil drucklos gemacht und je nach Medium auch entleert worden ist. Je nach Einsatzbereich das Ventil vor Beginn der Arbeiten auf Umgebungstemperatur abkühlen oder aufwärmen.
- Bei Arbeiten am Ventil sicherstellen, dass die pneumatische Hilfsenergie und das Stellsignal unterbrochen oder verriegelt sind, um eine Gefährdung durch bewegliche Teile des Stellventils zu vermeiden.

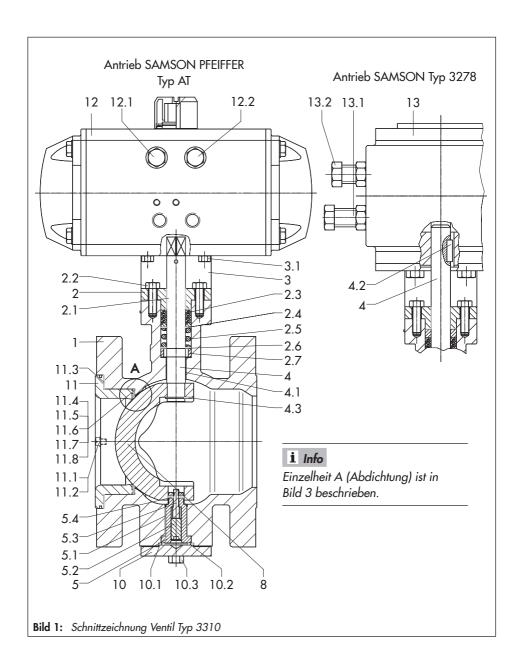
EB 8222 5

2 Aufbau und Wirkungsweise

Das pneumatische Stellventil besteht aus dem Kugelsegmentventil Typ 3310 und dem pneumatischen Schwenkantrieb SAMSON PFEIFFER Typ AT oder dem pneumatischen Schwenkantrieb Typ 3278.

Das Stellventil wird sowohl für den Regel- als auch für den Auf/Zu-Betrieb in der Verfahrenstechnik und im Anlagenbau eingesetzt. Das Stellventil ist geeignet für flüssige, dampf- und gasförmige Medien bei Temperaturen von –29 bis +220 °C und Nenndrücken von Class 150 und 300.

Das Kugelsegmentventil in den Nennweiten NPS 1 bis 12 ist weich oder metallisch dichtend ausgeführt. Die jeweilige Ausführung ist auf dem Typenschild des Ventilgehäuses gekennzeichnet (vgl. Kap. 8).


Das Ventil wird vom Medium durchströmt. Dabei beeinflusst der auf den Schwenkantrieb wirkende Stelldruck die Stellung (Öffnungswinkel) des Kugelsegments (8) und damit den Durchfluss über die zwischen Kugelsegment und Gehäuse (1) freigegebene Fläche. Die Kraftübertragung vom Antrieb zum Kugelsegmentventil erfolgt über einen Vierkant oder eine Passfeder der Ventilwelle. Die Ventilwelle (4) ist durch eine selbst nachstellende Stopfbuchspackung (2.3) abgedichtet. Die Packung besteht aus V-Ringen aus PTFE.

2.1 Sicherheitsstellung

2.1.1 Einfachwirkende Ausführung Typ SRP

Die Sicherheitsstellung des Stellventils bei Ausfall der Hilfsenergie (Stelldruck) wird bei Typ 3310/AT (einfachwirkende Ausführung Typ SRP) durch die Ausführung und bei Typ 3310/3278 durch den Anbau des Schwenkantriebs bestimmt.

1	Gehäuse	4.3	Sicherungsring	11.3	Flachdichtung
2	Stopfbuchsbrille	5	Gegenlagerwelle	11.4	Unterlegscheibe
2.1	Lagerbuchse	5.1	Lagerbuchse	11.5	Metallrohrdichtung
2.2	Schrauben	5.2	Gewindestift	11.6	Sitzring (Metall)
2.3	V-Ring-Packung	5.3	Spannbolzen	11.7	Stützring
2.4	Scheibe	5.4	Spannstifte	11.8	Sitzring (PTFE)
2.5	Feder	8	Kugelsegment	12	Antrieb Typ AT
2.6	Gleitscheibe	10	Bodenflansch	12.1	Anschlagschraube
2.7	Distanzstück	10.1	Flanschdichtung	12.2	Anschlagschraube
3	Joch	10.2	Flanschring	13	Antrieb Typ 3278
3.1	Schrauben	10.3	Flanschschrauben	13.1	Anschlagschraube
4	Welle	11	Druckstück	13.2	Anschlagschraube
4.1	Lagerbuchse	11.1	Schraube		
4.2	Passfeder	11.2	Scheibe		

EB 8222 7

Ventil ohne Hilfsenergie ZU

Die Antriebsfedern schließen das Ventil bei Druckentlastung des Schwenkantriebs und bei Ausfall der Hilfsenergie. Mit steigendem Stelldruck wird das Ventil gegen die Kraft der Antriebsfedern geöffnet.

Ventil ohne Hilfsenergie AUF

Die Antriebsfedern öffnen das Ventil bei Druckentlastung des Schwenkantriebs und bei Ausfall der Hilfsenergie. Mit steigendem Stelldruck wird das Ventil gegen die Kraft der Antriebsfedern geschlossen.

2.1.2 Doppeltwirkende Ausführung Typ DAP

Der doppeltwirkende Schwenkantrieb Typ DAP ist ohne Federn ausgeführt. Eine definierte Endlage wird bei Ausfall der Hilfsenergie nicht erreicht.

3 Einbau

3.1 Zusammenbau von Ventil und Antrieb

3.1.1 Typ 3310-SRP

Falls Ventil und Antrieb noch nicht von SAMSON zusammengebaut wurden, vorgehen wie im Folgenden beschrieben.

i Info

Bei der Standardausführung des Antriebs (SRP = einfachwirkend mit Federrückstellung) wirkt die Federrückstellung im Uhrzeigersinn rechtsdrehend

Falls eine andere Drehrichtung gewünscht oder ein doppeltwirkender Antrieb (DAP = doppeltwirkend ohne Federrückstellung) benötigt wird, muss dies bei der Bestellung des Antriebs angegeben werden.

Tabelle 1: Typ 3310-SRP

Sicherheitsstellung	Federn	Kennlinie
Ventil ZU	rechtsdrehend	gleichprozentig
Ventil ZU	linksdrehend	linear
Ventil AUF	rechtsdrehend	linear
Ventil AUF	linksdrehend	gleichprozentig

Der Schwenkantrieb kann durch die Kraftübertragung mit Vierkant jeweils um 90° versetzt nach bauseitigen Erfordernissen senkrecht oder waagerecht zum Kugelsegmentventil angeordnet werden.

Ventil ohne Hilfsenergie ZU

- Kugelsegment (8) des Ventils in die ZU-Stellung (0° Drehwinkel) stellen.
- Joch (3) je nach Nennweite mit zwei oder vier Schrauben am Flansch der Ventilwelle festschrauben.
- Wellenadapter (wenn nötig) auf die Ventilwelle stecken. Antrieb über den Adapter oder die Ventilwelle (4) schieben und mit vier Schrauben fest am Joch verschrauben.
- Anschlagschraube (12.1 oder 12.2, je nach Drehrichtung) so einstellen, dass das Ventil ganz geschlossen ist. Dazu Markierungen auf Welle und Stopfbuchsbrille ausrichten.
- 5. Stellung der Anschlagschraube durch ihre Kontermutter sichern.
- Stelldruckanschluss mit Stelldruck entsprechend der Federzahl (vgl. Typenschild des Antriebs) belasten.
- Die andere Anschlagschraube so einstellen, dass das Kugelsegment bei 90° Drehwinkel Anschlag hat.
- Stellung der Anschlagschraube durch ihre Kontermutter sichern.

Ventil ohne Hilfsenergie AUF

- Kugelsegment (8) des Ventils in die AUF-Stellung (90° Drehwinkel) stellen.
- Joch (3) je nach Nennweite mit 2 oder 4 Schrauben am Flansch der Ventilwelle festschrauben
- Wellenadapter (wenn nötig) auf die Ventilwelle stecken. Antrieb über den Adapter oder die Ventilwelle (4) schieben und

- mit vier Schrauben (3.1) fest am Joch (3) verschrauben.
- Anschlagschraube (12.1 oder 12.2, je nach Drehrichtung) so einstellen, dass das Ventil bei 90° ganz geöffnet ist. Dazu Markierungen auf Welle und Stopfbuchsbrille ausrichten.
- Stellung der Anschlagschraube durch ihre Kontermutter sichern.
- Stelldruckanschluss mit Stelldruck entsprechend der Federzahl (vgl. Typenschild des Antriebs) belasten.
- Die andere Anschlagschraube so einstellen, dass das Kugelsegment ganz geschlossen ist. Dazu Markierungen auf Welle und Stopfbuchsbrille ausrichten.
- 8. Stellung der Anschlagschraube durch ihre Kontermutter sichern.

3.1.2 Typ 3310/3278

Falls Ventil und Antrieb noch nicht von SAMSON zusammengebaut wurden, wird der Anbau des Antriebs abhängig von der Kennlinie und der Sicherheitsstellung am Gehäuseflansch 1 oder 2 vorgenommen.

Die Bezeichnung 1 oder 2 ist als Zahl auf der entsprechenden Gehäuseseite aufgegossen.

Tabelle 2: Typ 3310/3278

Sicherheitsstellung	Kennlinie	Gehäuseflansch	
Ventil ZU	gleichprozentig	2	
Ventil ZU	linear	1	
Ventil AUF	gleichprozentig	1	
Ventil AUF	linear	2	

EB 8222 9

Einbau

Der Schwenkantrieb kann durch die vier jeweils um 90° versetzt angeordneten Passfedernuten der Antriebswelle nach bauseitigen Erfordernissen um 90° versetzt oder senkrecht oder waagerecht am Kugelsegmentventil angeordnet werden.

Ventil ohne Hilfsenergie ZU

- Die beiden Anschlagschrauben (13.1 und 13.2) am Schwenkantrieb ganz lösen. Anschlagschraube (13.2) soweit hineindrehen, dass die Antriebswelle mit ihren Nuten senkrecht oder waagrecht zur Antriebsachse steht.
- Kugelsegment (8) des Ventils in die ZU-Stellung (0° Drehwinkel) stellen.
- Joch (3) je nach Nennweite mit zwei oder vier Schrauben am Flansch der Ventilwelle festschrauben.
- 4. Antrieb über die Ventilwelle (4) schieben und mit vier Schrauben fest am Joch (3) verschrauben.
- 5. Anschlagschraube (13.2) wieder lösen.
- Anschlagschraube (13.2) so einstellen, dass das Ventil ganz geschlossen ist. Dazu Markierungen auf Welle und Stopfbuchsbrille ausrichten.
- Für die AUF-Stellung den Stelldruckanschluss mit dem für den Federbereich erforderlichen Zuluftdruck belasten (vgl. Typenschild des Antriebs).
- Anschlagschraube (13.1) soweit hineindrehen, bis das Kugelsegment (8) des Ventils in die AUF-Stellung (90° Drehwinkel) gelangt.

 Stellung der beiden Anschlagschrauben durch ihre Kontermuttern sichern.

Ventil ohne Hilfsenergie AUF

- Die beiden Anschlagschrauben (13.1 und 13.2) am Schwenkantrieb ganz lösen. Anschlagschraube (13.1) so weit hineindrehen, dass die Antriebswelle mit ihren Nuten senkrecht oder waagrecht zur Antriebsachse steht.
- Kugelsegment (8) des Ventils in die AUF-Stellung (90° Drehwinkel) stellen.
- Joch (3) je nach Nennweite mit zwei oder vier Schrauben am Flansch der Ventilwelle festschrauben.
- Antrieb über die Ventilwelle (4) schieben und mit vier Schrauben fest am Joch (3) verbinden.
- 5. Anschlagschraube (13.1) wieder lösen.
- Für die ZU-Stellung den Stelldruckanschluss mit dem für den Federbereich erforderlichen Zuluftdruck belasten (vgl. Typenschild des Antriebs).
- Anschlagschraube (13.1) so einstellen, dass das Ventil durch das Kugelsegment ganz geschlossen ist. Dazu Markierungen auf Welle und Stopfbuchsbrille ausrichten.
- 8. Stelldruckanschluss entlasten.
- Anschlagschraube (13.2) soweit hineindrehen, bis das Kugelsegment (8) des Ventils in die AUF-Stellung (90° Drehwinkel) gelangt.
- 10. Stellung der beiden Anschlagschrauben durch ihre Kontermuttern sichern.

3.2 Einbaulage

i Info

Vor dem Einbau in die Rohrleitung muss das Ventil in die ZU-Stellung gebracht werden, damit sich der Sitz optimal zum Kugelsegment zentriert.

Das Stellventil kann waagerecht oder senkrecht in die Rohrleitung eingebaut werden. Für die Strömungsrichtung Folgendes beachten:

- Das Ventil so in die Rohrleitung einbauen, dass sich die untere Kugelsegmenthälfte in Strömungsrichtung öffnet.
 Damit wird vermieden, dass sich eventuelle Schmutzablagerungen ansammeln, die beim Öffnen ein Hindernis darstellen könnten. Bei Strömungsrichtung auf das Kugelsegment wird so ebenfalls verhindert, dass das Medium unnötig in den Wellenlagern steht.
- Die Standard-Durchflussrichtung (auf das Kugelsegment) ist von SAMSON durch einen Pfeil auf dem Gehäuse angegehen
- Falls die Strömungsrichtung, z. B. bei abrasiven Medien in die entgegengesetzte
 Richtung gewünscht ist, muss die entgegengesetzte Strömungsrichtung durch ein
 mitgeliefertes Pfeilschild mit zwei Kerbstiften angegeben werden.

Diese Strömungsrichtung hat zur Folge, dass der Mediumsdruck immer auf der Dichtungspackung ansteht. Beim Anziehen der Flanschschrauben sicherstellen, dass die Flachdichtungen gleichmäßig verpresst werden.

3.3 Stelldruckanschluss

Der Stelldruckanschluss der Schwenkantriebe ist als Bohrung mit G 1/8 Innengewinde bei kleinen Antrieben und mit G 1/4 bei großen Antrieben ausgeführt.

Der Anschluss erlaubt nach VDI/VDE 3845 auch den Anschluss eines Magnetventils z. B. Typ 3963 oder eines Grenzsignalgebers mit oder ohne Magnetventil Typ 3776/3777.

In Verbindung mit den SAMSON-Stellungsreglern steht für den Anschluss entsprechendes Zubehör zur Verfügung.

4 Bedienung

4.1 Änderung der Sicherheitsstellung

Die Sicherheitsstellung kann beim Antrieb Typ 3278 nachträglich von Ventil ohne Hilfsenergie ZU in Ventil ohne Hilfsenergie AUF und umgekehrt geändert werden. Dazu muss die Anbauseite am Schwenkantrieb geändert werden (vgl. Tabelle 2).

Bei Antrieb Typ SRP müssen die Kolben im Antrieb umgekehrt werden.

i Info

Weitere Einzelheiten, wie z. B. Änderung des Federbereichs zur Erlangung anderer Antriebsmomente, können jeweils der Einbau- und Bedienungsanleitung des verwendeten Schwenkantriebs entnommen werden.

5 Instandhaltung

Das Stellventil unterliegt besonders an Sitz, Kugelsegment und Stopfbuchse natürlichem Verschleiß. Abhängig von den Einsatzbedingungen muss es in entsprechenden Intervallen überprüft werden, um bereits vor möglichen Störungen Abhilfe schaffen zu können.

Falls Undichtigkeiten nach außen auftreten, kann die Stopfbuchse undicht sein.

Falls das Ventil nicht richtig abdichtet, kann der dichte Abschluss durch Schmutz oder andere Fremdkörper zwischen Sitzring und Kugelsegment oder durch beschädigte Dichtkanten verhindert sein.

- → Falls die Teile zur Reinigung ausgebaut werden, bei der weich dichtenden Ausführung die Position des Sitzrings (11.8) im Gehäuse markieren, damit dieser beim nachfolgenden Zusammenbau wieder in die gleiche Stellung gebracht werden kann.
- → Zum Austausch des Sitzrings (11.6 oder 11.8) vorgehen wie in Kap. 5.3 beschrieben.
- Bei allen Arbeiten am Ventilgehäuse zunächst Antrieb demontieren, vgl. Kap. 5.1.

A WARNUNG

Bei Ausbau von Teilen muss das Ventil aus der Rohrleitung ausgebaut werden. Dazu muss vorher der entsprechende Anlagenteil drucklos gemacht und entleert werden. Bei hohen Temperaturen eine entsprechende Abkühlung abwarten.

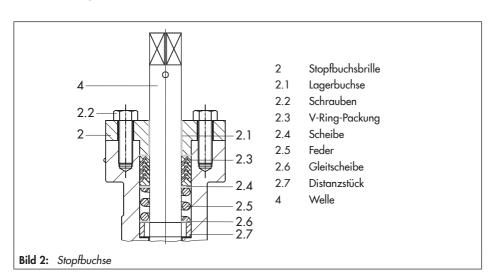
5.1 Antrieb demontieren

→ Die zwei oder vier Schrauben am Flansch der Ventilwelle lösen. Antrieb zusammen mit Joch (3) vom Ventil abziehen

5.2 Austausch der Stopfbuchspackung

Zur Abdichtung sind die Nennweiten NPS 1 bis 12 mit einer V-Ring-Packung ausgerüstet.

- Schrauben (2.2) lösen. Stopfbuchsbrille
 mit Lagerbuchse (2.1) abheben.
- Sämtliche Stopfbuchsteile mit geeignetem Werkzeug aus dem Packungsraum herausziehen und sorgfältig säubern.
- 3. Packung (2.3) erneuern. Packungsteile über die Welle (4) in den Packungsraum einschieben.
- Stopfbuchsbrille (2) mit Lagerbuchse (2.1) zusammen auf die Welle (4) aufschieben. Stopfbuchsbrille mit Schrauben (2.2) festziehen.
- Montage vornehmen wie in Kap. 5.4 beschrieben.


5.3 Austausch der Sitzringdichtung

1. Die beiden Sicherungsschrauben (11.1) mit Unterlegscheiben (11.2) entfernen.


- 2. Druckstück (11) mit Flachdichtung (11.3) ausbauen.
 - Falls das Druckstück nicht von Hand ausgebaut werden kann, Sonderwerkzeuge nach Tabelle 3 verwenden.
- Weich dichtende Ausführung: Stützring (11.7) und Sitzring (11.8) ausbauen.
 - Metallisch dichtende Ausführung: Der Reihe nach ggf. vorhandene Unterlegscheiben (11.4), Metallrohrdichtung (11.5) und Sitzring (11.6) ausbauen.
- 4. Montage vornehmen wie in Kap. 5.4 beschrieben.

5.4 Montage

Zusammenbau in umgekehrter Reihenfolge vornehmen. Sonderwerkzeuge werden nicht benötigt.

Instandhaltung

Das Druckstück (11) kann z. B. mit einem Blindflansch in das Gehäuse gedrückt werden, indem die Flanschschrauben entsprechend angezogen werden. Dazu das Ventil zuvor in die ZU-Stellung bringen, um den Sitzring zum Kugelsegment zu zentrieren.

Prüfung der Reibungsmomente

Notwendige Reibungsmomente (Losbrechmomente) zum Öffnen des Ventils müssen nach Tabelle 4 überprüft werden.

Bei Abweichungen der Reibungsmomente wie folgt vorgehen:

→ Weich dichtend: Das Kugelsegment zwei- bis dreimal im Uhrzeigersinn um 360° im Gehäuse drehen, damit sich die Dichtung anpassen kann.

Metallisch dichtend: Die Anzahl der verwendeten Unterlegscheiben (11.4) ändern. Gegebenenfalls die untere gehäuseseitige Unterlegscheibe nach oben verlegen.

5.5 Austausch von Kugelsegment, Wellen und Lager

• HINWEIS

Beschädigung des Stellventils! Zwischen Kugelsegment und Wellen darf kein Spiel bestehen. Deshalb müssen beim Austausch des Kugelsegments auch die Wellen erneuert werden.

Darüber hinaus Lagerbuchsen, Sitzringe und am Bodenflansch Ring und Dichtung austauschen.

5.5.1 Demontage

- Die beiden Schrauben (10.3) herausdrehen und Bodenflansch (10) mit Ring (10.2) abheben. Flanschdichtung (10.1) entfernen.
- 2. Gewindestift (5.2) aus der Welle herausdrehen und den Spannbolzen (5.3) entfernen. Sicherstellen, dass die Spannstifte (5.4) nicht verloren gehen.
- 3. Gegenlagerwelle herausdrücken.

-∵ Tipp

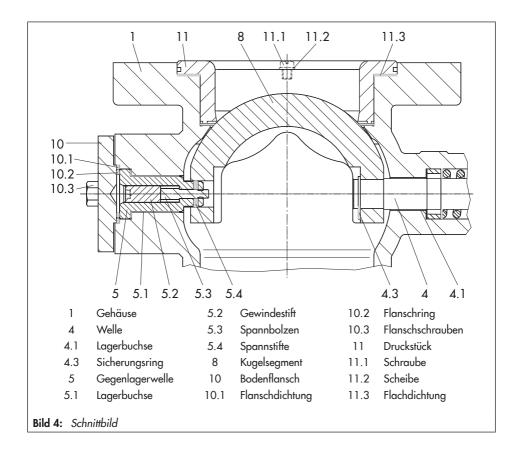
Falls die Gegenlagerwelle nicht herausgedrückt werden kann, statt des Gewindestifts eine Schraube mit Unterlegscheibe einschrauben (vgl. Tabelle 3). Durch Drehen der Schraube gegen die Unterlegscheibe lässt sich die Gegenlagerwelle lösen.

- Lagerbuchse (5.1) aus dem Gehäuse herausziehen.
- Schrauben (2.2) lösen und Stopfbuchsbrille (2) mit Lagerbuchse (2.1) abheben.
- Sicherungsring (4.3) mittels Sprengringzange von der Welle abziehen und Welle mit Demontagewerkzeug aus dem Gehäuse herausziehen.
- Sämtliche Stopfbuchsteile mit geeignetem Werkzeug aus dem Packungsraum herausziehen. Packungsraum sorgfältig säubern.
- 8. Untere Lagerbuchse (4.1) entfernen.
- Kugelsegment aus dem Gehäuse herausnehmen.

i Info

Bei NPS 1, 1½ und 2 muss das Kugelsegment an der Druckstückseite ausgebaut werden. Dazu wie in Kap. 5.3 beschrieben zunächst Druckstück und Sitzringteile demontieren.

5.5.2 Montage


SAMSON empfiehlt, für die Montage das in Tabelle 3 aufgeführte Montagewerkzeug zu bestellen

Instandhaltung

Zusammenbau in umgekehrter Reihenfolge vornehmen. Anzugsmomente beachten, vgl. Kap. 7.

Beim Einführen der Welle (4) in Gehäuse und Kugelsegment sicherstellen, dass die Welle korrekt zum Segment ausgerichtet ist. Die rote Wellenmarkierung muss bei geschlossenem Ventil rechtwinklig zur Rohrleitung stehen.

- Kugelsegment (8) in das Ventilgehäuse einlegen.
- Erst Lagerbuchse (4.1) in das Gehäuse schieben, dann Welle (4) ausrichten und mittels Montagewerkzeug durch die Lagerbuchse in das Kugelsegment eindrücken.
- 3. Kugelsegment (8) mit Hilfe des sich im Gegenlager befindlichen Werkzeugteils

- auf die Welle (4) schieben und den Sicherungsring (4.3) montieren.
- Spannstifte (5.4) in die Bohrungen der Gegenlagerwelle (5) einstecken. Vollständige Gegenlagerwelle (5, 5.2, 5.3 und 5.4) an der Lagerbuchse (5.1) ansetzen und mittels Stopfbuchsbrille (2) andrücken.
- 5. Kugelsegment (8) zentrisch ausrichten.
- Gewindestift (5.2) gegen den Spannbolzen (5.3) schrauben, um eine kraftschlüssige Verbindung zwischen Gegenlagerwelle und Kugelsegment zu erhalten.
- Stopfbuchse mit Distanzstück (2.7), Gleitscheibe (1.6), Feder (2.5), Scheibe (2.4), Packung (2.3) und Brille (2) montieren.

Prüfung der Reibungsmomente

Notwendige Reibungsmomente (Losbrechmomente) zum Öffnen des Ventils müssen nach Tabelle 4 überprüft werden.

Bei Abweichungen der Reibungsmomente vorgehen wie in Kap. 5.4, Abschnitt "Prüfung der Reibungsmomente" beschrieben.

6 Änderung der Kennlinie

Die Kennlinie kann durch Umstellung der Drehrichtung des Antriebs von gleichprozentig auf linear und umgekehrt geändert werden, vgl. Tabelle 1 und Tabelle 2.

7 Werkzeuge und Anzugsmomente

7.1 Sonderwerkzeuge

Tabelle 3: Sonderwerkzeuge

		ug für Druckstück 1)	Auszugswerk-		ge- und ·kzeug für Welle	
	Traverse	Flansch	zeug für Gegen- lagerwelle (5)	Presswerk- zeug Gegenla- gerwelle	Presswerkzeuge Antriebswelle	
NPS			Bestell-Nr.			
1	1281-0011	1001 0007		1001 0010		
11/2	1281-0012	1281-0007		1281-0019	1001 0000	
2	1281-0013	1201 0000	1281-0026	1001 0000	1281-0023	
3	1281-0014	1281-0008		1281-0020		
4	1281-0015	1201 0000	1281-0027	1281-0021	1281-0024	
6	1281-0016	1281-0009				
8	1281-0017					
10	1281-0018	1281-0010		1281-0022	1281-0025	
12	1201-0016					
Adapter für Drehmomentschlüssel		Welle mi	nit Vierkant Welle mit Pa		Passfeder	
	1, 1½, 2, 3	1281-0029		1281	-0032	
NPS	4, 6	1281	-0030			
NP3	8, 10	1201	0031	1281	-0033	
	12	1281-0031				

7.2 Anzugsmomente

Tabelle 4: Anzugs- und Reibungsmomente

Nennweite NPS	1	11/2	2	3	4	6	8	10	12
Anzugsmomente in Nm									
Schrauben (2.2) an Stopfbuchsbrille Schrauben (10.3) am Bodenflansch	35	35	35	35	35	35	60	60	60
Reibungsmomente zum Öffnen in Nm									
metallisch dichtend	8	10	11	19	40	70	100	155	155
weich dichtend	9	12	14	24	50	100	170	260	260

7.2.1 Anzugsmomente für Flanschschrauben

 Tabelle 5:
 ANSI-Ausführung

NPS	Class	Flanschschrauben (Qualität 8.8)	Mindest- Anzugsmoment in Nm
1	150	4 x ½"	35
'	300	4 x 5/8"	45
11/-	150	4 x ½"	45
11/2	300	4 x ³ / ₄ "	65
2	150	4 x 5/8"	90
2	300	8 x 5/8"	45
3	150	4 x 5/8"	125
3	300	8 x ¾"	65
4	150	8 x 5/8"	80
4	300	8 x ¾"	80
4	150	8 x ³ / ₄ "	125
6	300	12 x ³ / ₄ "	80
8	150	8 x ¾"	165
8	300	12 x ⁷ /8"	125
10	150	12 x 1/8"	155
10	300	16 x 1"	135
10	150	12 x ⁷ /8"	155
12	300	16 x %"	125

Werkzeuge und Anzugsmomente

Tabelle 6: DIN-Ausführung

DN	PN	Flanschschrauben (Qualität 8.8)	Mindest- Anzugsmoment in Nm
25	10/40	4 x M12	40
40	10/40	4 x M16	55
50	10/40	4 x M16	75
80	10/16	8 x M16	55
80	25/40	8 x M16	55
100	10/16	8 x M16	70
100	25/40	8 x M20	85
1.50	10/16	8 x M20	125
150	25/40	8 x M24	150
	10	8 x M20	165
200	16	12 x M20	110
200	25	12 x M24	135
	40	12 x M27	150
	10	12 x M20	140
250	16	12 x M24	165
250	25	12 x M27	185
	40	12 x M30	205
	10	12 x M20	140
200	16	12 x M24	165
300	25	16 x M27	140
	40	16 x M30	165

Typenschild

Das Typenschild enthält alle Angaben zur Identifizierung des Ventils.

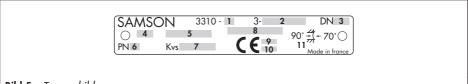


Bild 5: Typenschild

- 1 Typnummer
- 2 Seriennummer
- Nennweite DN .../NPS ... 3
- Abdichtung:

metallisch dichtend ΜE

PTFE PT

PEEK 450G Victrex® PK

PK1 PEEK 450FC30 Victrex®

- 5 Gehäusewerkstoff
- Nenndruck PN .../Class ...
- Durchflusskoeffizient $K_{VS}.../C_{V}$... Kennlinie:

gleichprozentig LIN linear

- 8 DGRI-Text
- 9 Nummer des Prüfbüros
- 10 Baujahr
- 11 Durchflussrichtung und maximaler Öffnungswinkel

9 Zubehör

Tabelle 7: Zubehör

NPS	Antrieb AT Typ SRP/DAP	Anschluss- flansch DIN 3337	Anbausatz Bestell-Nr.	Antriebsfläche in cm² Typ 3278	Anbausatz Bestell-Nr.	
1	30 60	F05	1400-7316		1400-7251	
1½	60 100	F05 F07	1400-7316 1400-7317		1400-7251	
2	60 100 150	F05 F07 F07	1400-7348 1400-7239 1400-7239	160 (F07)		
3	100 150 220	F07 F07 F10	1400-7239 1400-7239 1400-7732		1400-7252	
4	220 300 450	F10 F10 F12	1400-7240 1400-7240 1400-7241	220 (512)	1,400,7055	
6	300 450 600	F10 F12 F12	1400-7240 1400-7241 1400-7241	320 (F12)	1400-7255	
8	600 900 1200	F12 F14 F14	1400-7755 1400-7243 1400-7243			
10	900 1200	F14 F14	1400-7243			
12	900 1200	F14 F14	1400-7243			

10 Technische Daten

Die technischen Daten sowie Maße und Gewichte für die DIN- und ANSI-Ausführungen des Kugelsegmentventils Typ 3310 können dem zugehörigen Typenblatt ▶ T 8222 entnommen werden.

11 Rückfragen an den Hersteller

Bei Rückfragen bitte angeben:

- Auftragsnummer (Angabe auf dem Typenschild)
- Typ, Erzeugnisnummer, Nennweite und Ausführung des Stellventils
- Druck und Temperatur des Durchflussmediums
- Durchfluss in m³/h
- Nennsignalbereich (Federbereich des Antriebs)
- Einbauschema

EB 8222 23

