KONFIGURATIONS-HINWEISE

KH 5724-8

Originalanleitung

Elektrische Prozessregelantriebe

TROVIS 5724-8 · ohne Sicherheitsfunktion TROVIS 5725-8 · mit Sicherheitsfunktion

für Heiz- oder Kühlanwendungen

Firmwareversion 1.1x/2.1x

Hinweise zu diesem Konfigurationshandbuch

Die Gerätedokumentation für die elektrischen Prozessregelantriebe TROVIS 5724-8 und TROVIS 5725-8 besteht aus zwei Teilen:

- Einbau- und Bedienungsanleitung ► EB5724-8
- Konfigurationshandbuch KH 5724-8

Das vorliegende Konfigurationshandbuch KH 5724-8 wendet sich an regelungstechnisch versiertes Fachpersonal. Ausführlich werden die vorkonfigurierten Anlagen beschrieben.

Es wird vorausgesetzt, dass Sie mit der Bedienung des Geräts vertraut sind, d. h. Sie wissen wie Sie einen Konfigurationspunkt und Parameter anwählen und ändern. Ggf. muss die EB 5724-8 zu Rate gezogen werden. In der EB 5724-8 werden u. a. Aufbau und Wirkungsweise, Montage und Inbetriebnahme und Betrieb des elektrischen Prozessregelantriebs beschrieben.

Die gerätebezogenen Einbau- und Bedienungsanleitungen liegen den Geräten bei. Die jeweils aktuellsten Dokumente stehen im Internet unter www.samsongroup.com > Service & Support > Downloads > Dokumentation zur Verfügung.

Hinweise und ihre Bedeutung

▲ GEFAHR

Gefährliche Situationen, die zum Tod oder zu schweren Verletzungen führen

A WARNUNG

Situationen, die zum Tod oder zu schweren Verletzungen führen können

Sachschäden und Fehlfunktionen

Informative Erläuterungen

Praktische Empfehlungen

1	Vorkonfigurierte Anlagen5
1.1	Festwertregelung Heizen mit einem Sensor und Sollwertabsenkung mit [1]/[O]-Tasten oder DI38
1.2	Festwertregelung Heizen mit Temperaturmittelwertbildung über zwei Sensoren und Sollwertabsenkung mit [I]/[O]-Tasten
1.3	Festwertregelung Kühlen über Differenztemperatur zwischen zwei Sensoren und Start-/Stopp-Regelung mit [1]/[O]-Tasten oder D13
1.4	Festwertregelung Kühlen mit Temperaturmittelwertbildung über zwei Sensoren und Start-/Stopp-Regelung mit [1]/[O]-Tasten
1.5	Folgeregelung Heizen mit Rücklauftemperaturbegrenzung und Sollwertabsenkung mit [I]/[O]-Tasten
1.6	Folgeregelung Heizen witterungsgeführt mit Rücklauftemperaturbegrenzung und Sollwertabsenkung mit [I]/[O]-Tasten oder DI418
1.7	Begrenzungsregelung Heizen mit Minimalauswahl mit Rücklauftemperaturbegrenzung und Sollwertabsenkung mit [I]/[O]-Tasten
1.8	Begrenzungsregelung Heizen mit Minimalauswahl witterungsgeführt mit Rücklauftemperaturbegrenzung und Sollwertabsenkung mit [I]/[O]-Tasten oder DI4.22
1.9	Begrenzungsregelung Kühlen mit Minimalauswahl über Differenztemperatur zwischen zwei Sensoren mit Rücklauftemperaturbegrenzung und Start-/Stopp-Regelung mit [1]/[O]-Tasten oder DI325
1.10	Begrenzungsregelung Kühlen mit Minimalauswahl über Differenztemperatur zwischen zwei Sensoren mit Rücklauftemperaturbegrenzung, externem Sollwert über AI4 und Start-/Stopp-Regelung mit [1]/[O]-Tasten oder DI3
1.11	Begrenzungsregelung Kühlen Fernkälte mit Maximalauswahl der Sollwertführung und Start-/Stopp-Regelung mit DI4
1.12	Kaskadenregelung Heizen mit zwei Sensoren und Sollwertumschaltung mit [1]/ [O]-Tasten32
1.13	Kaskadenregelung Kühlen mit zwei Sensoren und Start-/Stopp-Regelung mit [1]/[O]-Tasten34
1.14	Stellungsgeber mit Regelung Heizen bei Ausfall mit Rücklauftemperaturbegrenzung und Sollwertabsenkung mit [I]/[O]-Tasten oder DI3
2	Freie Einstellungen38
_ 2.1	Eingänge und Ausgänge
2.1.1	Universaleingänge 11 bis 14
2.1.2	Funktionalisierung AI1 bis AI4
2.1.3	Schaltausgang 40
2.2	Regelung

Inhalt

5	Verwendete Abkürzungen	70
4	Modbusliste	61
3.3	Werkseinstellung	60
3.2	Service	59
3.1	Betriebswerte	
3	Zusätzliche Anzeigen und Funktionen in Software TROVIS-VIEW	59
2.7.1	Anzeige	58
2.7	[Auf]/[Ab]-Einstellungen	57
2.6.1	[1]/[O]-Einstellungen	
2.6	Bedienung	55
2.5.6	Kennlinie Stellwert	
2.5.5	Blockierschutz	53
2.5.4	Wiederanlaufbedingung	
2.5.3	Nullpunktabgleich	
2.5.2	Verhalten bei Signalstörung	
2.5.1	Antriebsparameter	51
2.5	Antriebsfunktionen	
2.4	Regler [2]	
2.3.5	Stellgröße	
2.3.4	PID-Regler	
2.3.3	Regeldifferenz	
2.3.2	Sollwerteinstellung	
2.3.1	lstwert	
2.3	Regler [1]	
2.2.4	Interne Grenzwerte LIM1 und LIM2	
2.2.3	Wirkrichtung	
2.2.1	Regelungsart	
221	Anlagenkennzitter	⊿1

1 Vorkonfigurierte Anlagen

Der elektrische Prozessregelantrieb kann mit Hilfe von Anlagenkennziffern über TROVIS-VIEW für eine bestimmte Anwendung vorkonfiguriert werden. Mit einer Anlagenkennziffer ≠ 0 sind nur die Parameter anwählbar, die für die gewählte Anwendung benötigt werden.

Wenn die Anlagenkennziffer 0 "Benutzerdefiniert" eingestellt ist, dann ist der Prozessregelantrieb frei konfigurierbar.

Wird von einer Anlagenkennziffer ≠0 auf die Anlagenkennziffer 0 umgeschaltet, dann werden die Daten der vorher gewählten Anlagenkennziffer übernommen. Die in dieser Anlage nicht verwendeten Parameter werden mit der Werkseinstellung beschrieben.

Auslieferungszustand

Bei Auslieferung des Prozessregelantriebs ist Anlagenkennziffer 10 "Festwertregelung Heizen mit Temperaturmittelwertbildung über zwei Sensoren und Sollwertabsenkung mit [I]/[O]-Tasten" voreingestellt, siehe Kapitel 1.2.

9 HINWEIS

Der Prozessregelantrieb ist in vier Geräteausführungen [A], [B], [C] und [D] erhältlich, vgl. EB 5724-8. Diese sind abgestimmt auf die vorkonfigurierten Anwendungen und im Nachfolgenden als empfohlene Geräteausführung aufgeführt. Abweichend von den Empfehlungen ist es aber auch in vielen Fällen möglich, Prozessregelantriebe mit einer anderen Geräteausführung einzusetzen, vgl. Tabelle 1.

Tabelle 1: Geräteausführungen ([A], [B], [C], [D]) und ihre Einsatzmöglichkeiten

	Einsatz [A]	Einsatz [B]	Einsatz [C]	Einsatz [D]
Anlagenkennziffer 20, 60	•	•	•	•
Anlagenkennziffer 1, 10, 21, 30, 50, 70, 80	0	•	0	•
Anlagenkennziffer 65, 66	-	-	•	•
Anlagenkennziffer 35, 55, 95	-	-	0	•

- empfohlen
- o möglich unter Verzicht des Schaltausgangs

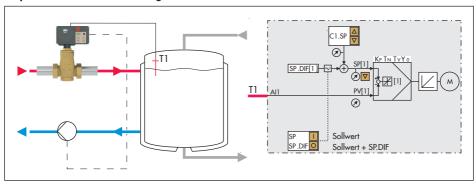
möglich

nicht möglich

Vorkonfigurierte Anlagen

Einstellen der Anlagenkennziffer

Die Anlagenkennziffer wird mit TROVIS-VIEW im Ordner [Regelung] unter dem Parameter MO ausgewählt und eingestellt, vgl. Kapitel 2.2.1.


In den nachfolgenden Kapiteln 1.1 bis 1.14 sind alle vorkonfigurierten Anlagen beschrieben. Im grau markierten Bereich rechts sind die anwendungsbezogenen Standardeinstellungen aufgeführt.

- Anlagenkennziffer 1, vgl. Kapitel 1.1:
 Heizen · Festwertregelung · Mit 1 Sensor · Sollwert/Sollwertabsenkung mit [I]/[O]-Tasten oder DI 3
- Anlagenkennziffer 10, vgl. Kapitel 1.2:
 Heizen · Festwertregelung · Temperaturmittelwertbildung über 2 Sensoren · Sollwert/Sollwertabsenkung mit [I]/[O]-Tasten
- Anlagenkennziffer 20, vgl. Kapitel 1.3:
 Kühlen · Festwertregelung · Differenztemperatur zwischen 2 Sensoren · Start-/Stopp-Regelung mit [I]/[O]-Tasten oder DI3
- Anlagenkennziffer 21, vgl. Kapitel 1.4:
 Kühlen · Festwertregelung · Temperaturmittelwertbildung über 2 Sensoren · Start-/ Stopp-Regelung mit [I]/[O]-Tasten
- Anlagenkennziffer 30, vgl. Kapitel 1.5:
 Heizen · Folgeregelung · Rücklauftemperaturbegrenzung · Sollwert/Sollwertabsenkung mit [1]/[O]-Tasten
- Anlagenkennziffer 35, vgl. Kapitel 1.6:
 Heizen · Folgeregelung · Witterungsgeführt, Rücklauftemperaturbegrenzung · Sollwert/ Sollwertabsenkung mit [1]/[O]-Tasten oder DI4
- Anlagenkennziffer 50, vgl. Kapitel 1.7:
 Heizen · Begrenzungsregelung mit Minimalauswahl · Rücklauftemperaturbegrenzung · Sollwert/Sollwertabsenkung mit [I]/[O]-Tasten
- Anlagenkennziffer 55, vgl. Kapitel 1.8:
 Heizen · Begrenzungsregelung mit Minimalauswahl · Witterungsgeführt, Rücklauftemperaturbegrenzung · Sollwert/Sollwertabsenkung mit [I]/[O]-Tasten oder DI4
- Anlagenkennziffer 60, vgl. Kapitel 1.9:
 Kühlen · Begrenzungsregelung mit Minimalauswahl · Differenztemperatur zwischen
 2 Sensoren, Rücklauftemperaturbegrenzung · Start-/Stopp-Regelung mit [I]/[O]-Tasten oder DI3

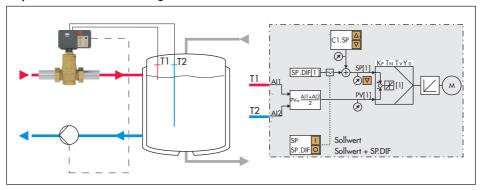
- Anlagenkennziffer 65, vgl. Kapitel 1.10:
 Kühlen · Begrenzungsregelung mit Minimalauswahl · Differenztemperatur zwischen
 2 Sensoren, Rücklauftemperaturbegrenzung · Externer Sollwert mit Al4 · Start-/Stopp-Regelung mit [I]/[O]-Tasten oder DI3
- Anlagenkennziffer 66, vgl. Kapitel 1.11:
 Kühlen · Begrenzungsregelung Fernkälte · Minimalauswahl der Sollwertführung · Start-/ Stopp-Regelung mit DI4
- Anlagenkennziffer 70, vgl. Kapitel 1.12:
 Heizen · Kaskadenregelung · Mit 2 Sensoren · Sollwertumschaltung mit [I]/[O]-Tasten
- Anlagenkennziffer 80, vgl. Kapitel 1.13:
 Kühlen · Kaskadenregelung · Mit 2 Sensoren · Start-/Stopp-Regelung mit [I]/[O]-Tasten
- Anlagenkennziffer 95, vgl. Kapitel 1.14:
 Heizen · Stellungsgeber / Festwert-/Folgeregelung · 2–10 V Stellungsgeber / 0–2 V
 Festwert-/Folgeregelung · Rücklauftemperaturbegrenzung, Sollwert/Sollwertabsenkung
 mit [1]/[O]-Tasten oder DI3

1.1 Festwertregelung Heizen mit einem Sensor und Sollwertabsenkung mit [I]/[O]-Tasten oder DI3

Empfohlene Geräteausführung: [B]

Anlagenkennziffer 1

Die Vorlauftemperatur T1 wird mit einem Pt-1000-Sensor gemessen und als Istwert PV1 über den Analogeingang Al1 erfasst. Der Sollwert C1.SP kann direkt über die Bedientasten am Gerät vorgegeben werden.


Die Position der Antriebsstange des z. B. im Vorlauf eingebauten Stellventils wird in Abhängigkeit des Sollwerts und des Istwerts mit dem integrierten Prozessregler geregelt. Dadurch kann die Vorlauftemperatur T1 konstant gehalten werden. Außerdem kann der Sollwert z. B. für eine Tag/Nacht-Umschaltung über die Bedientasten [I]/[O] abgesenkt oder angehoben werden.

Über den Schaltausgang L' ist es zusätzlich möglich, eine Pumpe anzusteuern.

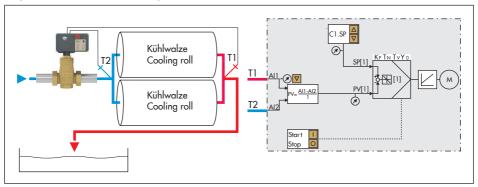
Universaleingänge I1 bis I	4	
Funktion I1	11 = 3	Al1 (Pt 1000)
Funktion I2	12 = 0	Keine
Funktion I3	13 = 0	Keine
Funktion I4	14 = 0	Keine
Schaltausgang		
Funktion	M4 = 3	Ein bei Hub >0 % / Aus bei 0 % mit Nachlaufzeit
Nachlaufzeit	M4.T = 60	5
Regelung		
Regelungsart	M1 = 0	Festwert/Folge
Wirkrichtung	M2 = 0	>> (steigend/steigend)
Regler [1]		
Quelle Istwert	C1.1 = 1	Istwert = AI1 nach Funktionalisierung
Quelle Sollwert	C1.2 = 5	Sollwert = C1.SP
Sollwert	C1.SP = 50	°C 0,0
Sollwert-Offset	C1.SP.DIF =	-10,0 °C
Untere Einstellgrenze	C1.SP.MIN	= 10 °C
Obere Einstellgrenze	C1.SP.MAX	= 99 °C
Proportionalbeiwert	C1.KP = 2,0	0
Nachstellzeit	C1.TN = 12	20 s
Bedienung		
Funktion [I]/[O]-Tasten	A1.1 = 2	[1] Sollwert / [O] Sollwertabsenkung/-anhebung
Steuerung [1]/[O]-Tasten	A1.5 = 0	[I]/[O]-Tasten

1.2 Festwertregelung Heizen mit Temperaturmittelwertbildung über zwei Sensoren und Sollwertabsenkung mit [I]/[O]-Tasten

Empfohlene Geräteausführung: [B]

Anlagenkennziffer 10 (eingestellte Anlagenkennziffer bei Auslieferung)

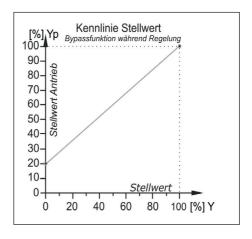
Die beiden Temperaturen T1 und T2 werden jeweils mit einem Pt-1000-Sensor gemessen und über die Analogeingänge Al1 und Al2 erfasst. Durch die für den Istwert PV hinterlegte Formel wird der Mittelwert von T1 und T2 gebildet und anschließend mit dem Sollwert verglichen. Der Sollwert C1.SP kann direkt über die Bedientasten am Gerät vorgegeben werden.


Die Position der Antriebsstange des z. B. im Vorlauf eingebauten Stellventils wird in Abhängigkeit des Sollwerts und des Istwerts mit dem integrierten Prozessregler geregelt. Dadurch wird die Mediumstemperatur konstant gehalten. Außerdem kann der Sollwert z. B. für eine Tag/Nacht-Umschaltung über die Bedientasten [1]/[O] abgesenkt werden.

Über den Schaltausgang L' ist es zusätzlich möglich, eine Pumpe anzusteuern.

Universaleingänge I1 bis I	4	
Funktion I1	11 = 3	Al1 (Pt 1000)
Funktion I2	12 = 3	Al2 (Pt 1000)
Funktion I3	I3 = 0	Keine
Funktion I4	14 = 0	Keine
Schaltausgang		
Funktion	M4 = 3	Ein bei Hub >0 % / Aus bei 0 % mit Nachlaufzeit
Nachlaufzeit	M4.T = 60	5
Regelung		
Regelungsart	M1 = 0	Festwert/Folge
Wirkrichtung	M2 = 0	>> (steigend/steigend)
Regler [1]		
Quelle Istwert	C1.1 = 0	Istwert = Formel
Faktor Al1	C1.a = 1,0	
Faktor AI2	C1.b = 1.0	
Faktor AI3	C1.z = 2.0	
Quelle Sollwert	C1.2 = 5	Sollwert = C1.SP
Sollwert	C1.SP = 50	℃ O,
Sollwert-Offset	C1.SP.DIF =	-10,0 °C
Untere Einstellgrenze	C1.SP.MIN	= 10 °C
Obere Einstellgrenze	C1.SP.MAX	= 99 °C
Proportionalbeiwert	C1.KP = 2,0	0
Nachstellzeit	C1.TN = 12	20 s
Bedienung		
Funktion [I]/[O]-Tasten	A1.1 = 2	[1] Sollwert / [O] Sollwertabsenkung/-anhebung
Steuerung [1]/[O]-Tasten	A1.5 = 0	[I]/[O]-Tasten

1.3 Festwertregelung Kühlen über Differenztemperatur zwischen zwei Sensoren und Start-/Stopp-Regelung mit [I]/[O]-Tasten oder DI3

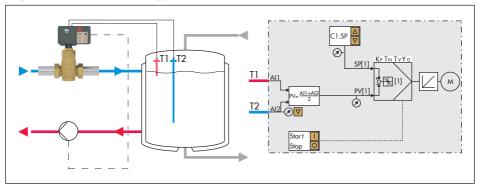

Empfohlene Geräteausführung: [A]

Anlagenkennziffer 20

Über die zwei Pt-1000-Sensoren an den Analogeingängen Al1 und Al2 werden die Vorlauftemperatur T2 und die Rücklauftemperatur T1 gemessen. Durch die für den Istwert PV hinterlegte Formel wird die Differenztemperatur $\Delta T = T1 - T2$ gebildet und mit dem Sollwert C1.SP verglichen. Regler [1] ist auf Kühlen eingestellt, d. h., die Regeldifferenz wird im Regler invertiert. Der Sollwert C1.SP kann direkt über die Bedientasten am Gerät vorgegeben werden.

Die Position der Antriebsstange des z. B. im Vorlauf eingebauten Stellventils wird in Abhängigkeit des Sollwerts und des Istwerts mit dem integrierten Prozessregler geregelt. Dadurch wird die Differenztemperatur konstant gehalten. Außerdem kann die Regelung über die Bedientasten [I]/[O] gestartet oder gestoppt werden.

Nach Start der Regelung wird die Anfangssequenz "Spülen" für die Dauer der Anfahrzeit A1.T.ON (= 10 Minuten) ausgeführt. Während der Anfahrzeit wird das Ventil über den Einstellparameter A1.YP.ON zu 100 % geöffnet. Nach der Anfahrzeit startet


der Regelprozess. Hierbei durchfährt der Prozessregelantrieb den durch die Kennlinie eingeschränkten Hubbereich. Nach Betätigen der Taste [O] "Stopp" fährt der Antrieb das Ventil vollständig zu (Parameter A1.YP.OFF = 0,0 %).

Voreinstellungen am Regler

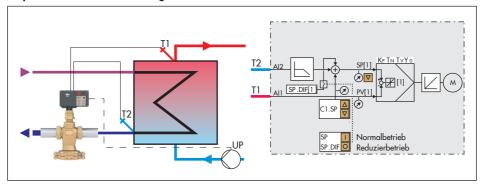
Universaleingänge I1 bis I4			
Funktion I1	11 = 3	Al1 (Pt 1000)	
Funktion I2	12 = 3	Al2 (Pt 1000)	
Funktion I3	13 = 0	Keine	
Funktion I4	14 = 0	Keine	
Regelung			
Regelungsart	M1 = 0	Festwert/Folge	
Wirkrichtung	M2 = 0	>> (steigend/steigend)	
Regler [1]			
Quelle Istwert	C1.1 = 0	Istwert = Formel	
Faktor Al1	C1.a = 1,0		
Faktor AI2	C1.b = -1,0	0	
Faktor AI3	C1.z = 1.0		
Quelle Sollwert	C1.2 = 5	Sollwert = C1.SP	
Sollwert	C1.SP = 2,0	0 ℃	
Untere Einstellgrenze	C1.SP.MIN	°C = 0 °C	
Obere Einstellgrenze	C1.SP.MAX	X = 10 °C	
Funktion Regeldifferenz	C1.3 = 7	Regeldifferenz invertiert	
Bedienung			
Funktion [I]/[O]-Tasten	A1.1 = 1	[I] Start Regelung / [O] Stopp Regelung	
Steuerung [1]/[O]-Tasten	A1.5 = 0	[I]/[O]-Tasten	

1.4 Festwertregelung Kühlen mit Temperaturmittelwertbildung über zwei Sensoren und Start-/Stopp-Regelung mit [I]/[O]-Tasten

Empfohlene Geräteausführung: [B]

Anlagenkennziffer 21

Die beiden Temperaturen T1 und T2 werden jeweils mit einem Pt-1000-Sensor gemessen und über die Analogeingänge Al1 und Al2 erfasst. Durch die für den Istwert PV hinterlegte Formel wird der Mittelwert von T1 und T2 gebildet und anschließend mit dem Sollwert verglichen. Regler [1] ist auf "Kühlen" eingestellt, d. h., die Regeldifferenz wird im Regler invertiert. Der Sollwert C1.SP kann direkt über die Bedientasten am Gerät vorgegeben werden.


Die Position der Antriebsstange des z. B. im Vorlauf eingebauten Stellventils wird in Abhängigkeit des Sollwerts und des Istwerts mit dem integrierten Prozessregler geregelt. Dadurch wird die Mediumstemperatur konstant gehalten. Zusätzlich kann die Regelung über die Bedientasten [I]/[O] gestartet oder gestoppt werden.

Über den Schaltausgang L' ist es zusätzlich möglich, eine Pumpe anzusteuern.

Universaleingänge I1 bis I	4	
Funktion I1	11 = 3	Al1 (Pt 1000)
Funktion I2	12 = 3	Al2 (Pt 1000)
Funktion I3	13 = 0	Keine
Funktion I4	14 = 0	Keine
Schaltausgang		
Funktion	M4 = 3	Ein bei Hub >0 % / Aus bei 0 % mit Nachlaufzeit
Nachlaufzeit	M4.T = 60	5
Regelung		
Regelungsart	M1 = 0	Festwert/Folge
Wirkrichtung	M2 = 0	>> (steigend/steigend)
Regler [1]		
Quelle Istwert	C1.1 = 0	Istwert = Formel
Faktor Al1	C1.a = 1,0	
Faktor AI2	C1.b = 1.0	
Faktor AI3	C1.z = 2.0	
Quelle Sollwert	C1.2 = 5	Sollwert = C1.SP
Sollwert	C1.SP = 20	.0 °C
Untere Einstellgrenze	C1.SP.MIN	= 0 °C
Obere Einstellgrenze	C1.SP.MAX	= 40 °C
Funktion Regeldifferenz	C1.3 = 7	Regeldifferenz invertiert
Proportionalbeiwert	C1.KP = 10	0,0
Nachstellzeit	C1.TN = 90) s
Bedienung		
Funktion [I]/[O]-Tasten	A1.1 = 1	[I] Start Regelung / [O] Stopp Regelung
Steuerung [I]/[O]-Tasten	A1.5 = 0	[I]/[O]-Tasten

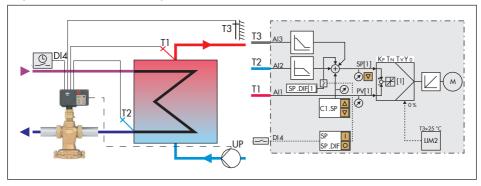
1.5 Folgeregelung Heizen mit Rücklauftemperaturbegrenzung und Sollwertabsenkung mit [1]/[O]-Tasten

Empfohlene Geräteausführung: [B]

Anlagenkennziffer 30

Über die zwei Pt-1000-Sensoren an den Analogeingängen Al1 und Al2 werden die Sekundärvorlauftemperatur T1 und die Primärrücklauftemperatur T2 erfasst. T1 stellt in diesem System den Istwert PV [1] dar. Über die Funktionalisierung des Eingangssignals Al2 ist die Kennlinie zur Rücklauftemperaturbegrenzung in Abhängigkeit der Primärrücklauftemperatur T2 hinterlegt.

Der Sollwert vor dem Vergleicher SP [1] der Folgeregelung ergibt sich durch Addition der temperaturabhängigen Kennlinie nach der Funktionalisierung von T2 und dem Sollwert C1.SP. Zusätzlich kann mit dem Parameter SP.DIF [1] über die Bedientasten [1]/[O] oder DI4 der Sollwert abgesenkt werden.


Die Position der Antriebsstange des im Primärrücklauf eingebauten Stellventils wird in Abhängigkeit des Sollwerts und des Istwerts mit dem integrierten Prozessregler geregelt. Dadurch wird die sekundärseitige Vorlauftemperatur geregelt und die primärseitige Rücklauftemperatur begrenzt.

Über den Schaltausgang L' ist es zusätzlich möglich, eine Pumpe anzusteuern.

Universaleingänge I1 bis I	4	
Funktion I1	11 = 3	Al1 (Pt 1000)
Funktion I2	12 = 3	Al2 (Pt 1000)
Funktion 13	13 = 0	Keine
Funktion I4	14 = 0	Keine
Schaltausgang		
Funktion	M4 = 3	Ein bei Hub >0 % / Aus bei 0 % mit Nachlaufzeit
Nachlaufzeit	M4.T = 60	s
Regelung		
Regelungsart	M1 = 0	Festwert/Folge
Wirkrichtung	M2 = 0	>> (steigend/steigend)
Regler [1]		
Quelle Istwert	C1.1 = 1	Istwert = Al1 nach Funktionalisierung
Quelle Sollwert	C1.2 = 0	Sollwert = C1.SP + Formel
Sollwert	C1.SP = 50	0,0 ℃
Sollwert-Offset	C1.SP.DIF =	= -10,0 °C
Untere Einstellgrenze	C1.SP.MIN	= 10 °C
Obere Einstellgrenze	C1.SP.MAX	(= 99 °C
Faktor AI2	C1.f = 1.0	
Proportionalbeiwert	C1.KP = 2,	0
Nachstellzeit	C1.TN = 12	20 s
Bedienung		
Funktion [I]/[O]-Tasten	A1.1 = 2	[1] Sollwert / [O] Sollwertabsenkung/-anhebung
Steuerung [I]/[O]-Tasten	A1.5 = 0	[I]/[O]-Tasten

1.6 Folgeregelung Heizen witterungsgeführt mit Rücklauftemperaturbegrenzung und Sollwertabsenkung mit [I]/[O]-Tasten oder DI4

Empfohlene Geräteausführung: [D]

Anlagenkennziffer 35

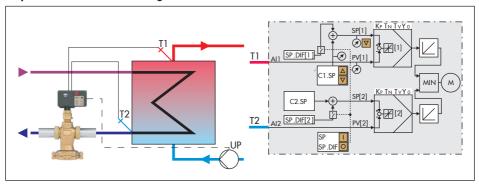
Über die drei Pt-1000-Sensoren an den Analogeingängen Al1 bis Al3 werden die Sekundärvorlauftemperatur T1, die Primärrücklauftemperatur T2 und die Außentemperatur T3 erfasst.

Die Vorlauftemperatur T1 stellt in diesem System den Istwert PV [1] dar.

Über die Funktionalisierung des Eingangssignals Al3 ist die Kennlinie zur Witterungsführung in Abhängigkeit der Außentemperatur T3 hinterlegt. Die Rücklauftemperaturbegrenzung ist durch die Kennlinie über die Funktionalisierung des Eingangssignals Al2 vorkonfiguriert.

Der Sollwert vor Vergleicher SP [1] der Folgeregelung ergibt sich durch Addition der beiden temperaturabhängigen Kennlinien nach der Funktionalisierung von T2 und T3.

Der Sollwert C1.SP wird zur Parallelverschiebung des Sollwerts vor dem Vergleicher SP [1] genutzt. Zusätzlich kann mit dem Parameter SP.DIF [1] über die Bedientasten [I]/ [O] oder DI4 der Sollwert abgesenkt oder angehoben werden. Über den internen Grenzwert LIM2 ≥25 °C wird die Außentemperatur überwacht. Überschreitet die Außentemperatur 25 °C, wird das Ventil vollständig zugefahren (Parameter C1.YP = 0,0 %).


Die Position der Antriebsstange des z. B. im Primärrücklauf eingebauten Stellventils wird in Abhängigkeit des Sollwerts und des Istwerts mit dem integrierten Prozessregler geregelt. Dadurch wird die sekundärseitige Vorlauftemperatur geregelt und die primärseitige Rücklauftemperatur begrenzt.

Über den Schaltausgang L' ist es zusätzlich möglich, eine Pumpe anzusteuern.

Universaleingänge I1 bis I	4	
Funktion I1	11 = 3	Al1 (Pt 1000)
Funktion I2	12 = 3	Al2 (Pt 1000)
Funktion I3	13 = 3	Al3 (Pt 1000)
Funktion I4	14 = 1	DI4 nicht invertiert
Schaltausgang		
Funktion	M4 = 3	Ein bei Hub >0 % / Aus bei 0 % mit Nachlaufzeit
Nachlaufzeit	M4.T = 60	s
Regelung		
Regelungsart	M1 = 0	Festwert/Folge
Wirkrichtung	M2 = 0	>> (steigend/steigend)
Regler [1]		
Quelle Istwert	C1.1 = 1	Istwert = AI1 nach Funktionalisierung
Quelle Sollwert	C1.2 = 0	Sollwert = C1.SP + Formel
Sollwert	C1.SP = 0.0	0 ℃
Sollwert-Offset	C1.SP.DIF =	= −10,0 °C
Untere Einstellgrenze	C1.SP.MIN	= -9 °C
Obere Einstellgrenze	C1.SP.MAX	C = 9 °C
Faktor AI2	C1.f = 1.0	
Faktor AI3	C1.g = 1.0	
Proportionalbeiwert	C1.KP = 2,	0
Nachstellzeit	C1.TN = 12	20 s
Bedienung		
Funktion [I]/[O]-Tasten	A1.1 = 2	[I] Sollwert / [O] Sollwertabsenkung/-anhebung
Steuerung [1]/[O]-Tasten	A1.5 = 4	[1]/[O]-Tasten oder DI4

1.7 Begrenzungsregelung Heizen mit Minimalauswahl mit Rücklauftemperaturbegrenzung und Sollwertabsenkung mit [I]/[O]-Tasten

Empfohlene Geräteausführung: [B]

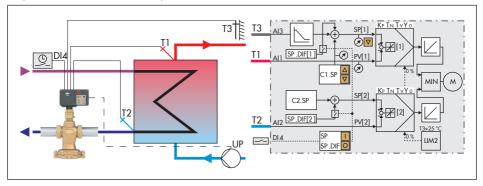
Anlagenkennziffer 50

Über die zwei Pt-1000-Sensoren an den Analogeingängen Al1 und Al2 werden die Sekundärvorlauftemperatur T1 und die Primärrücklauftemperatur T2 erfasst.

Die Temperatur T1 stellt in diesem System den Istwert PV [1] dar. Die Rücklauftemperatur T2 stellt den Istwert PV [2] zur Regelung der Rücklauftemperatur dar und regelt auf den festen Sollwert C2.SP.

Aufgrund der Minimalauswahl wirkt immer nur der Regler mit der jeweils kleineren Stellgröße auf den Antrieb.

Zusätzlich kann mit den Parametern SP.DIF [1] und SP.DIF [2] über die Bedientasten [I]/[O] der Sollwert abgesenkt werden. Über den Schaltausgang L' ist es zusätzlich möglich, eine Pumpe anzusteuern.


Die Position der Antriebsstange des z. B. im Primärrücklauf eingebauten Stellventils wird in Abhängigkeit des Sollwerts und des Istwerts mit dem integrierten Prozessregler geregelt. Dadurch werden die sekundärseitige Vorlauftemperatur und die primärseitige Rücklauftemperatur geregelt und begrenzt.

Über den Schaltausgang L' ist es zusätzlich möglich, eine Pumpe anzusteuern.

Universaleingänge I1 bis I	4	
Funktion I1	11 = 3	Al1 (Pt 1000)
Funktion I2	12 = 3	Al2 (Pt 1000)
Funktion I3	13 = 0	Keine
Funktion I4	14 = 0	Keine
Schaltausgang		
Funktion	M4 = 3	Ein bei Hub >0 % / Aus bei 0 % mit Nachlaufzeit
Nachlaufzeit	M4.T = 60	s
Regelung		
Regelungsart	M1 = 1	Begrenzung (MIN-Auswahl)
Wirkrichtung	M2 = 0	>> (steigend/steigend)
Regler [1]		
Quelle Istwert	C1.1 = 1	Istwert = AI1 nach Funktionalisierung
Quelle Sollwert	C1.2 = 5	Sollwert = C1.SP
Sollwert	C1.SP = 50	0,0 ℃
Sollwert-Offset	C1.SP.DIFF	= -10,0 °C
Untere Einstellgrenze	C1.SP.MIN = 10 °C	
Obere Einstellgrenze	C1.SP.MAX	= 99 °C
Proportionalitätsbeiwert	C1.KP = 2,0	0
Nachstellzeit	C1.TN = 12	20 s
Regler [2]		
Quelle Istwert	C2.1 = 2	Istwert = AI2 nach Funktionalisierung
Quelle Sollwert	C2.2 = 6	Sollwert = C2.SP
Sollwert	C2.SP = 65	0°C
Sollwert-Offset	C2.SP.DIF =	= -5,0 °C
Untere Einstellgrenze	C2.SP.MIN	= 10 °C
Obere Einstellgrenze	C2.SP.MAX	= 90 °C
Proportionalitätsbeiwert	C2.KP = 2,0	0
Nachstellzeit	C2.TN = 12	20 s
Bedienung		
Funktion [I]/[O]-Tasten	A1.1 = 2	[1] Sollwert / [O] Sollwertabsenkung/-anhebung
Steuerung [I]/[O]-Tasten	A1.5 = 0	[I]/[O]-Tasten

1.8 Begrenzungsregelung Heizen mit Minimalauswahl witterungsgeführt mit Rücklauftemperaturbegrenzung und Sollwertabsenkung mit [I]/[O]-Tasten oder DI4

Empfohlene Geräteausführung: [D]

Anlagenkennziffer 55

Über die drei Pt-1000-Sensoren an den Analogeingängen AI1 bis AI3 werden die Sekundärvorlauftemperatur T1, die Primärrücklauftemperatur T2 und die Außentemperatur T3 erfasst.

Die Temperatur T1 stellt in diesem System den Istwert PV [1] dar. Die Temperatur T3 bildet über die Funktionalisierung des Eingangssignals AI3 den Sollwert zur Regelung von T1. Die Rücklauftemperatur T2 stellt den Istwert PV [2] zur Regelung der Rücklauftemperatur auf den festen Sollwert C2.SP dar.

Der Sollwert vor Vergleicher SP [1] des Reglers [1] ergibt sich durch Addition der witterungsgeführten Kennlinie und dem Sollwert C1.SP. Der Sollwert C1.SP wird zur Parallelverschiebung der witterungsgeführten Kennlinie genutzt. Mit Hilfe von Regler [2] und

dem Sollwert C2.SP wird die Rücklauftemperatur T2 auf den eingestellten Sollwert begrenzt und geregelt.

Zusätzlich kann mit den Parametern SP.DIF [1] und SP.DIF [2] über die Bedientasten [I]/[O] oder DI4 der Sollwert abgesenkt werden. Über den internen Grenzwert LIM2 ≥25 °C wird die Außentemperatur überwacht. Überschreitet die Außentemperatur 25 °C, wird das Ventil vollständig zugefahren (Parameter C1.YP und C2.YP = 0,0 %).

Aufgrund der Minimalauswahl wirkt immer nur der Regler mit der jeweils kleineren Stellgröße auf den Antrieb.

Die Position der Antriebsstange des z. B. im Primärrücklauf eingebauten Stellventils wird in Abhängigkeit des Sollwerts und des Istwerts mit dem integrierten Prozessregler ge-

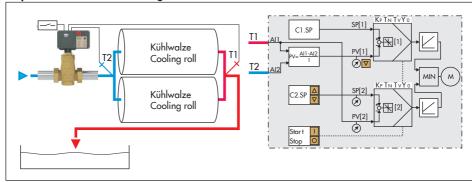
regelt. Dadurch werden die sekundärseitige Vorlauftemperatur witterungsgeführt und die primärseitige Rücklauftemperatur fest geregelt und begrenzt.

Über den Schaltausgang L' ist es zusätzlich möglich, eine Pumpe anzusteuern.

Bei Verwendung dieser Anlagenkennziffer ist es im Vergleich zur Anlagenkennziffer 35 durch den Einsatz des zweiten Regelkreises möglich, die Rücklauftemperatur zu regeln. Außerdem besteht hier die Möglichkeit, die Rücklauftemperatur auch witterungsgeführt in Abhängigkeit der Außentemperatur T3 zu regeln. Dazu wird auf denselben, über den Eingang Al3 funktionalisierten, Sollwert zurückgegriffen, dieser kann jedoch mit dem Faktor C2.g unterschiedlich verarbeitet werden.

Um diese Einstellung wirksam zu machen, empfiehlt SAMSON die Parametereinstellungen C2.SP = 45 °C und C2.g = 0,2.

Voreinstellungen am Regler


Universaleingänge I1 bis I4			
Funktion I1	11 = 3	Al1 (Pt 1000)	
Funktion I2	12 = 3	Al2 (Pt 1000)	
Funktion I3	I3 = 3	Al3 (Pt 1000)	
Funktion I4	14 = 1	DI4 nicht invertiert	
Schaltausgang			
Funktion	M4 = 3	Ein bei Hub >0 % / Aus bei 0 % mit Nachlaufzeit	
Nachlaufzeit	M4.T = 60	s	
Regelung			
Regelungsart	M1 = 1	Begrenzung (MIN-Auswahl)	
Wirkrichtung	M2 = 0	>> (steigend/steigend)	
Regler [1]			
Quelle Istwert	C1.1 = 1	Istwert = AI1 nach Funktionalisierung	
Quelle Sollwert	C1.2 = 0	Sollwert = C1.SP + Formel	
Sollwert	C1.SP = 0,0) ℃	
Sollwert-Offset	C1.SP.DIF =	-10,0 °C	
Untere Einstellgrenze	C1.SP.MIN = −9 °C		
Obere Einstellgrenze	C1.SP.MAX = 9 °C		
Proportionalitätsbeiwert	C1.KP = 2,0		
Nachstellzeit	C1.TN = 12	20 s	

Vorkonfigurierte Anlagen

Regler [2]	
Quelle Istwert	C2.1 = 2 Istwert = Al2 nach Funktionalisierung
Quelle Sollwert	C2.2 = 0 Sollwert = C2.SP + Formel
Sollwert	C2.SP = 65,0 °C
Sollwert-Offset	C2.SP.DIF = −5,0 °C
Untere Einstellgrenze	$C2.SP.MIN = -50 ^{\circ}C$
Obere Einstellgrenze	$C2.SP.MAX = 90 ^{\circ}C$
Proportionalitätsbeiwert	C2.KP = 2.0
Nachstellzeit	C2.TN = 120 s
Bedienung	
Funktion [I]/[O]-Tasten	A1.1 = 2 [I] Sollwert / [O] Sollwertabsenkung/-anhebung
Steuerung [I]/[O]-Tasten	A1.5 = 4 $[I]/[O]$ -Tasten oder DI4

1.9 Begrenzungsregelung Kühlen mit Minimalauswahl über Differenztemperatur zwischen zwei Sensoren mit Rücklauftemperaturbegrenzung und Start-/Stopp-Regelung mit [I]/[O]-Tasten oder DI3

Empfohlene Geräteausführung: [A]

Anlagenkennziffer 60

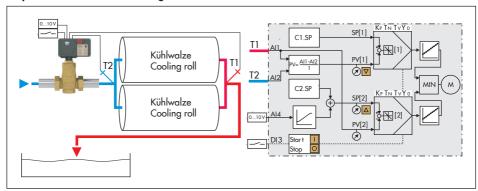
Über die zwei Pt-1000-Sensoren an den Analogeingängen Al1 und Al2 werden die Vorlauftemperatur T2 und die Rücklauftemperatur T1 gemessen. Durch die für den Istwert PV hinterlegte Formel wird die Differenztemperatur ΔT = T1 – T2 gebildet und mit dem Sollwert C1.SP verglichen. Regler [1] und Regler [2] sind auf "Kühlen" eingestellt, d. h., die Regeldifferenz wird im Regler invertiert. Die Temperatur T1 kann zusätzlich mit Hilfe des Sollwerts C2.SP von Regler [2] auf eine maximale Temperatur geregelt werden. Aufgrund der Minimalauswahl wirkt immer nur der Regler mit der kleineren Stellgröße am Ausgang.

Der Sollwert C2.SP kann direkt über die Bedientasten am Gerät vorgegeben werden.

Die Position der Antriebsstange des im Vorlauf eingebauten Stellventils wird in Abhäng-

igkeit des Sollwerts und des Istwerts mit dem integrierten Prozessregler geregelt. Dadurch werden Differenztemperatur und Rücklauftemperatur konstant gehalten. Zusätzlich kann die Regelung über die Bedientasten [I]/[O] gestartet oder gestoppt werden.

Nach Start der Regelung mit der Taste [I] wird die Anfangssequenz "Spülen" für die Dauer der Anfahrzeit A1.T.ON (= 10 Minuten) ausgeführt. Während der Anfahrzeit wird das Ventil über den Einstellparameter A1.YP.ON zu 100 % geöffnet. Nach der Anfahrzeit startet der Regelprozess. Hierbei durchfährt der Prozessregelantrieb den Hubbereich entsprechend der unter Anlagenkennziffer 20 abgebildeten Kennlinie. Nach Betätigen der Taste [O] "Stopp" fährt der Antrieb das Ventil vollständig zu (Parameter A1.YP.OFF = 0,0 %).


Vorkonfigurierte Anlagen

Voreinstellungen am Regler

Universaleingänge 11 bis I4 Funktion I1 II = 3 Al1 (Pt 1000) Funktion I2 I2 = 3 Al2 (Pt 1000) Funktion I3 I3 = 1 DI3 nicht invertiert Funktion I4 I4 = 0 Keine Regelung Wirkrichtung M2 = 0 >> (steigend/steigend) Wirkrichtung M2 = 0 >> (steigend/steigend) Regeler [1] Quelle Istwert C1.1 = 0 Istwert = Formel Foktor Al1 C1.a = 1,0 Faktor Al2 C1.b = -1,0 Divisor C1.z = 1,0 Quelle Sollwert C1.2 = 5 Sollwert = C1.SP Sollwert C1.SP = 2,0 °C Universe Einstellgrenze C1.SP.MIN = 0 °C Obere Einstellgrenze C1.SP.MAX = 10 °C Funktion Regeldifferenz C1.3 = 7 Regeldifferenz invertiert Regeler [2] Guelle Istwert C2.1 = 1 Istwert = Al1 nach Funktionalisierung Guelle Sollwert C2.2 = 6			
Funktion 12			
Funktion I3	Funktion I1	11 = 3	Al1 (Pt 1000)
Funktion I4 I4 = 0 Keine Regelung Regelungsart M1 = 1 Begrenzung (MIN-Auswahl) Wirkrichtung M2 = 0 >> (steigend/steigend) Regler [1] Quelle Iswert C1.1 = 0 Iswert = Formel Faktor Al1 C1.a = 1,0 Foktor Al2 C1.b = -1,0 Divisor C1.z = 1,0 Quelle Sollwert C1.SP = 2,0 °C Untere Einstellgrenze C1.SP.MIN = 0 °C Obere Einstellgrenze C1.SP.MAX = 10 °C Funktion Regeldifferenz C1.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C2.1 = 1 Istwert = Al1 nach Funktionalisierung Quelle Sollwert C2.2 = 6 Sollwert = C2.SP Sollwert C2.SP = 25,0 °C Untere Einstellgrenze C2.SP.MAX = 70 °C Funktion Regeldifferenz C2.SP = 40,0 Bedienung Funktion [1]/[O]-Tasten A.1.1 = 1 [1] Start Regelung / [O] Stopp Regelung	Funktion I2	12 = 3	
Regelung M1 = 1 Begrenzung (MIN-Auswahl) Wirkrichtung M2 = 0 >> (steigend/steigend) Regler [1] Ouelle Istwert C1.1 = 0 Istwert = Formel Faktor Al1 C1.a = 1,0 Ouelle Istwert C1.b = -1,0 Faktor Al2 C1.b = -1,0 Ouelle Sollwert C1.z = 1,0 Quelle Sollwert C1.2 = 5 Sollwert = C1.SP Sollwert C1.SP = 2,0 °C Outere Einstellgrenze C1.SP.MIN = 0 °C Obere Einstellgrenze C1.SP.MAX = 10 °C Outere Einstellgrenze C1.SP.MAX = 10 °C Funktion Regeldifferenz C1.3 = 7 Regeldifferenz invertiert Regler [2] Quelle Istwert C2.1 = 1 Istwert = Al1 nach Funktionalisierung Quelle Sollwert C2.2 = 6 Sollwert = C2.SP Sollwert C2.2 = 6 Sollwert = C2.SP Cuhtere Einstellgrenze C2.SP.MAN = 70 °C Funktion Regeldifferenz C2.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C2.KP = 40,0 Sedienung Funktion [1]/(O)-Tasten A1.1 = 1 [1] Start Regelung / [O] Stopp Regelung	Funktion 13	13 = 1	DI3 nicht invertiert
Regelungsart M1 = 1 Begrenzung (MIN-Auswahl) Wirkrichtung M2 = 0 >> (steigend/steigend) Regler [1] Ouelle Istwert C1.1 = 0 Istwert = Formel Faktor Al1 C1.a = 1,0 Foktor Al2 C1.b = -1,0 Divisor C1.z = 1,0 College (No.) College (No.)<	Funktion I4	14 = 0	Keine
Wirkrichtung M2 = 0 >> (steigend/steigend) Regler [1] Quelle Istwert C1.1 = 0 Istwert = Formel Faktor Al1 C1.α = 1,0 Faktor Al2 C1.b = −1,0 Divisor C1.z = 1,0 Quelle Sollwert C1.2 = 5 Sollwert = C1.SP Sollwert C1.SP = 2,0 °C Untere Einstellgrenze C1.SP.MIN = 0 °C Obere Einstellgrenze C1.SP.MAX = 10 °C Funktion Regeldifferenz C1.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C1.KP = 40,0 Regler [2] Quelle Istwert C2.1 = 1 Istwert = Al1 nach Funktionalisierung Quelle Sollwert C2.2 = 6 Sollwert = C2.SP Sollwert C2.2 = 6 Sollwert = C2.SP Sollwert C2.SP = 25,0 °C Untere Einstellgrenze C2.SP.MIN = 10 °C Obere Einstellgrenze C2.SP.MAX = 70 °C Funktion Regeldifferenz C2.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C2.KP = 40,0 Bedienung	Regelung		
Regler [1] Quelle Istwert C1.1 = 0	Regelungsart	M1 = 1	Begrenzung (MIN-Auswahl)
Quelle Istwert C1.1 = 0 Istwert = Formel Faktor Al1 C1.a = 1,0 Faktor Al2 C1.b = −1,0 Divisor C1.z = 1,0 Quelle Sollwert C1.2 = 5 Sollwert = C1.SP Sollwert C1.SP = 2,0 °C Untere Einstellgrenze C1.SP.MIN = 0 °C Obere Einstellgrenze C1.SP.MAX = 10 °C Funktion Regeldifferenz C1.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C1.KP = 40,0 Regler [2] Quelle Istwert C2.1 = 1 Istwert = Al1 nach Funktionalisierung Quelle Sollwert C2.2 = 6 Sollwert = C2.SP Sollwert C2.2 = 6 Sollwert = C2.SP Sollwert C2.SP = 25,0 °C Untere Einstellgrenze C2.SP.MAX = 70 °C Funktion Regeldifferenz C2.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C2.KP = 40,0 Bedienung Funktion [1]/[O]-Tasten A1.1 = 1 [I] Start Regelung / [O] Stopp Regelung	Wirkrichtung	M2 = 0	>> (steigend/steigend)
Faktor Al1 C1.a = 1,0 Faktor Al2 C1.b = -1,0 Divisor C1.z = 1,0 Quelle Sollwert C1.SP = 2,0 °C Untere Einstellgrenze C1.SP.MAX = 10 °C Funktion Regeldifferenz C1.KP = 40,0 Regler [2] Quelle Sollwert C2.2 = 6 Sollwert = C2.SP Sollwert = C3.SP Sollwert = C4.SP Sollwert = C5.SP C2.SP = 25,0 °C Untere Einstellgrenze C2.SP.MAX = 10 °C Regler [2] Guelle Istwert C2.1 = 1 Street = Al1 nach Funktionalisierung Quelle Sollwert C2.2 = 6 Sollwert = C2.SP Sollwert C2.SP = 25,0 °C Untere Einstellgrenze C2.SP.MIN = 10 °C Obere Einstellgrenze C2.SP.MAX = 70 °C Funktion Regeldifferenz C2.SP = 40,0 Bedienung Funktion [1]/[O]-Tasten A1.1 = 1 [1] Start Regelung / [O] Stopp Regelung	Regler [1]		
Faktor Al2 C1.b = -1,0 Divisor C1.z = 1,0 Quelle Sollwert C1.2 = 5 Sollwert = C1.SP Sollwert C1.SP = 2,0 °C Untere Einstellgrenze C1.SP.MAX = 10 °C Obere Einstellgrenze C1.SP.MAX = 10 °C Funktion Regeldifferenz C1.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C1.KP = 40,0 Regler [2] Quelle Istwert C2.1 = 1 Istwert = Al1 nach Funktionalisierung Quelle Sollwert C2.2 = 6 Sollwert = C2.SP Sollwert C2.SP = 25,0 °C Untere Einstellgrenze C2.SP.MAX = 70 °C Funktion Regeldifferenz C2.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C2.4 = 40,0 Bedienung Funktion [1]/[O]-Tasten A1.1 = 1 [1] Start Regelung / [O] Stopp Regelung	Quelle Istwert	C1.1 = 0	Istwert = Formel
Divisor C1.z = 1,0 Quelle Sollwert C1.SP = 2,0 °C Untere Einstellgrenze C1.SP.MIN = 0 °C Obere Einstellgrenze C1.SP.MAX = 10 °C Funktion Regeldifferenz C1.SP = 40,0 Regler [2] Quelle Sollwert C2.2 = 6 Sollwert = C2.SP Sollwert C2.SP = 25,0 °C Untere Einstellgrenze C2.SP.MIN = 10 °C Funktion Regeldifferenz C3.SP = 25,0 °C Untere Einstellgrenze C4.SP.MIN = 10 °C Obere Einstellgrenze C5.SP.MIN = 10 °C Funktion Regeldifferenz C5.SP.MAX = 70 °C Funktion Regeldifferenz C5.SP = 40,0 Bedienung Funktion [I]/[O]-Tasten A1.1 = 1 [I] Start Regelung / [O] Stopp Regelung	Faktor Al1	C1.a = 1,0	
Quelle Sollwert C1.2 = 5 Sollwert = C1.SP Sollwert C1.SP = 2,0 °C Untere Einstellgrenze C1.SP.MIN = 0 °C Obere Einstellgrenze C1.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C1.KP = 40,0 Regler [2] Quelle Istwert C2.1 = 1 Istwert = Al1 nach Funktionalisierung Quelle Sollwert C2.2 = 6 Sollwert = C2.SP Sollwert C2.SP = 25,0 °C Untere Einstellgrenze C2.SP.MIN = 10 °C Obere Einstellgrenze C2.SP.MAX = 70 °C Funktion Regeldifferenz C2.SP = 40,0 Regleright C2.SP = 40,0 Regleright C2.SP = 40,0 Regleright Funktion [I]/[O]-Tasten A1.1 = 1 [I] Start Regelung / [O] Stopp Regelung	Faktor AI2	C1.b = -1,	0
Sollwert C1.SP = 2,0 °C Untere Einstellgrenze C1.SP.MIN = 0 °C Obere Einstellgrenze C1.SP.MAX = 10 °C Funktion Regeldifferenz C1.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C1.KP = 40,0 Regler [2] Quelle Istwert C2.1 = 1 Istwert = Al1 nach Funktionalisierung Quelle Sollwert C2.2 = 6 Sollwert = C2.SP Sollwert C2.SP = 25,0 °C Untere Einstellgrenze C2.SP.MIN = 10 °C Obere Einstellgrenze C2.SP.MAX = 70 °C Funktion Regeldifferenz C2.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C2.KP = 40,0 Bedienung Funktion [I]/[O]-Tasten A1.1 = 1 [I] Start Regelung / [O] Stopp Regelung	Divisor	C1.z = 1.0	
Untere Einstellgrenze C1.SP.MIN = 0 °C Obere Einstellgrenze C1.SP.MAX = 10 °C Funktion Regeldifferenz C1.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C1.KP = 40,0 Regler [2] Quelle Istwert C2.1 = 1 Istwert = Al1 nach Funktionalisierung Quelle Sollwert C2.2 = 6 Sollwert = C2.SP Sollwert C2.SP = 25,0 °C Untere Einstellgrenze C2.SP.MIN = 10 °C Obere Einstellgrenze C2.SP.MAX = 70 °C Funktion Regeldifferenz C2.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C2.KP = 40,0 Bedienung Funktion [I]/[O]-Tasten A1.1 = 1 [I] Start Regelung / [O] Stopp Regelung	Quelle Sollwert	C1.2 = 5	Sollwert = C1.SP
Obere Einstellgrenze C1.SP.MAX = 10 °C Funktion Regeldifferenz C1.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C1.KP = 40,0 Regler [2] Quelle Istwert C2.1 = 1 Istwert = Al1 nach Funktionalisierung Quelle Sollwert C2.2 = 6 Sollwert = C2.SP Sollwert C2.SP = 25,0 °C Untere Einstellgrenze C2.SP.MIN = 10 °C Obere Einstellgrenze C2.SP.MAX = 70 °C Funktion Regeldifferenz C2.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C2.KP = 40,0 Bedienung Funktion [I]/[O]-Tasten A1.1 = 1 [I] Start Regelung / [O] Stopp Regelung	Sollwert	C1.SP = 2,0	0 ℃
Funktion Regeldifferenz C1.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C1.KP = 40,0 Regler [2] Quelle Istwert C2.1 = 1 Istwert = AI1 nach Funktionalisierung Quelle Sollwert C2.2 = 6 Sollwert = C2.SP Sollwert C2.SP = 25,0 °C Untere Einstellgrenze C2.SP.MIN = 10 °C Obere Einstellgrenze C2.SP.MAX = 70 °C Funktion Regeldifferenz C2.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C2.KP = 40,0 Bedienung Funktion [I]/[O]-Tasten A1.1 = 1 [I] Start Regelung / [O] Stopp Regelung	Untere Einstellgrenze	C1.SP.MIN	°C = 0 °C
Proportionalbeiwert C1.KP = 40,0 Regler [2] Quelle Istwert C2.1 = 1	Obere Einstellgrenze	C1.SP.MAX	C = 10 °C
Regler [2] Quelle Istwert C2.1 = 1 Istwert = Al1 nach Funktionalisierung Quelle Sollwert C2.2 = 6 Sollwert = C2.SP Sollwert C2.SP = 25,0 °C Untere Einstellgrenze C2.SP.MIN = 10 °C Obere Einstellgrenze C2.SP.MAX = 70 °C Funktion Regeldifferenz C2.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C2.KP = 40,0 Bedienung Funktion [I]/[O]-Tasten A1.1 = 1 [I] Start Regelung / [O] Stopp Regelung	Funktion Regeldifferenz	C1.3 = 7	Regeldifferenz invertiert
Quelle Istwert C2.1 = 1 Istwert = Al1 nach Funktionalisierung Quelle Sollwert C2.2 = 6 Sollwert = C2.SP Sollwert C2.SP = 25,0 °C Untere Einstellgrenze C2.SP.MIN = 10 °C Obere Einstellgrenze C2.SP.MAX = 70 °C Funktion Regeldifferenz C2.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C2.KP = 40,0 Bedienung Funktion [I]/[O]-Tasten A1.1 = 1 [I] Start Regelung / [O] Stopp Regelung	Proportionalbeiwert	C1.KP = 40	0,0
Quelle Sollwert C2.2 = 6 Sollwert = C2.SP Sollwert C2.SP = 25,0 °C Untere Einstellgrenze C2.SP.MIN = 10 °C Obere Einstellgrenze C2.SP.MAX = 70 °C Funktion Regeldifferenz C2.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C2.KP = 40,0 Bedienung Funktion [I]/[O]-Tasten A1.1 = 1 [I] Start Regelung / [O] Stopp Regelung	Regler [2]		
Sollwert C2.SP = 25,0 °C Untere Einstellgrenze C2.SP.MIN = 10 °C Obere Einstellgrenze C2.SP.MAX = 70 °C Funktion Regeldifferenz C2.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C2.KP = 40,0 Bedienung Funktion [I]/[O]-Tasten A1.1 = 1 [I] Start Regelung / [O] Stopp Regelung	Quelle Istwert	C2.1 = 1	Istwert = Al1 nach Funktionalisierung
Untere Einstellgrenze C2.SP.MIN = 10 °C Obere Einstellgrenze C2.SP.MAX = 70 °C Funktion Regeldifferenz C2.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C2.KP = 40,0 Bedienung Funktion [I]/[O]-Tasten A1.1 = 1 [I] Start Regelung / [O] Stopp Regelung	Quelle Sollwert	C2.2 = 6	Sollwert = C2.SP
Obere Einstellgrenze C2.SP.MAX = 70 °C Funktion Regeldifferenz C2.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C2.KP = 40,0 Bedienung Funktion [I]/[O]-Tasten A1.1 = 1 [I] Start Regelung / [O] Stopp Regelung	Sollwert	C2.SP = 25	5,0 °C
Funktion Regeldifferenz C2.3 = 7 Regeldifferenz invertiert Proportionalbeiwert C2.KP = 40,0 Bedienung Funktion [I]/[O]-Tasten A1.1 = 1 [I] Start Regelung / [O] Stopp Regelung	Untere Einstellgrenze	C2.SP.MIN	= 10 °C
Proportionalbeiwert C2.KP = 40,0 Bedienung Funktion [I]/[O]-Tasten A1.1 = 1 [I] Start Regelung / [O] Stopp Regelung	Obere Einstellgrenze	C2.SP.MAX	= 70 °C
Bedienung Funktion [I]/[O]-Tasten A1.1 = 1 [I] Start Regelung / [O] Stopp Regelung	Funktion Regeldifferenz	C2.3 = 7	Regeldifferenz invertiert
Funktion [I]/[O]-Tasten A1.1 = 1 [I] Start Regelung / [O] Stopp Regelung	Proportionalbeiwert	C2.KP = 40	0,0
	Bedienung		
Steuerung [I]/[O]-Tasten A1.5 = 3 [I]/[O]-Tasten oder DI3	Funktion [I]/[O]-Tasten	A1.1 = 1	[I] Start Regelung / [O] Stopp Regelung
	Steuerung [I]/[O]-Tasten	A1.5 = 3	[I]/[O]-Tasten oder DI3

1.10 Begrenzungsregelung Kühlen mit Minimalauswahl über Differenztemperatur zwischen zwei Sensoren mit Rücklauftemperaturbegrenzung, externem Sollwert über Al4 und Start-/Stopp-Regelung mit [I]/[O]-Tasten oder DI3

Empfohlene Geräteausführung: [C]

Anlagenkennziffer 65

Über die zwei Pt-1000-Sensoren an den Analogeingängen Al1 und Al2 werden die Vorlauftemperatur T2 und die Rücklauftemperatur T1 gemessen. Durch die für den Istwert PV hinterlegte Formel wird die Differenztemperatur $\Delta T = T1 - T2$ gebildet und mit dem Sollwert C1.SP verglichen. Regler [1] und Regler [2] sind auf "Kühlen" eingestellt, d. h., die Regeldifferenz wird im Regler invertiert. Die Temperatur T1 kann zusätzlich mit Hilfe des externen Sollwerts AI4 von Regler [2] auf eine maximale Temperatur begrenzt und geregelt werden. Der externe Sollwert wird durch ein Einheitssignal von 0 bis 10 V am Eingang Al4 erfasst und zum Sollwert im Bereich von 10 bis 70 °C funktionalisiert. Der Sollwert C2 SP dient in die-

sem Fall als Offset oder als Ersatzwert bei Ausfall der Eingangsgröße AI4.

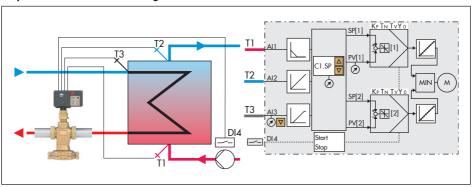
Aufgrund der Minimalauswahl wirkt immer nur der Regler mit der kleineren Stellgröße am Ausgang.

Die Position der Antriebsstange des im Vorlauf eingebauten Stellventils wird in Abhängigkeit des Sollwerts und des Istwerts mit dem integrierten Prozessregler geregelt. Dadurch werden Differenztemperatur und Rücklauftemperatur konstant gehalten. Zusätzlich kann die Regelung über die Bedientasten [I]/[O] oder extern über DI3 gestartet oder gestoppt werden.

Nach Start der Regelung wird die Anfangsseguenz "Spülen" für die Dauer der Anfahr-

Vorkonfigurierte Anlagen

zeit A1.T.ON (= 10 Minuten) ausgeführt. Während der Anfahrzeit wird das Ventil über den Einstellparameter A1.YP.ON zu 100 % geöffnet. Nach der Anfahrzeit startet der Regelprozess. Hierbei durchfährt der Prozessregelantrieb den Hubbereich entsprechend der unter Anlagenkennziffer 20 abgebildeten Kennlinie. Nach Betätigen der Taste [O] "Stopp" fährt der Antrieb das Ventil vollständig zu (Parameter A1.YP.OFF = 0,0 %).


Voreinstellungen am Regler

Universaleingänge I1 bis I	4	
Funktion I1	11 = 3	Al1 (Pt 1000)
Funktion I2	12 = 3	Al2 (Pt 1000)
Funktion I3	13 = 3	DI3 nicht invertiert
Funktion I4	14 = 1	Al4 (0 bis 10 V)
Regelung		
Regelungsart	M1 = 1	Begrenzung (MIN-Auswahl)
Wirkrichtung	M2 = 0	>> (steigend/steigend)
Regler [1]		
Quelle Istwert	C1.1 = 0	Istwert = Formel
Faktor Al1	C1.a = 1.0	
Faktor AI2	C1.b = -1,0)
Divisor	C1.z = 1.0	
Quelle Sollwert	C1.2 = 5	Sollwert = C1.SP
Sollwert	C1.SP = 2,0) °C
Untere Einstellgrenze	C1.SP.MIN	= 0 °C
Obere Einstellgrenze	C1.SP.MAX	= 10 °C
Funktion Regeldifferenz	C1.3 = 7	Regeldifferenz invertiert
Proportionalbeiwert	C1.KP = 40	0,0
Regler [2]		
Quelle Istwert	C2.1 = 1	Istwert = AI1 nach Funktionalisierung
Quelle Sollwert	C2.2 = 0	Sollwert = C2.SP + Formel
Sollwert	C2.SP = 0.0	0 ℃
Untere Einstellgrenze	C2.SP.MIN = -9 °C	
Obere Einstellgrenze	C2.SP.MAX	= 99 °C
Funktion Regeldifferenz	C2.3 = 7	Regeldifferenz invertiert
Proportionalbeiwert	C2.KP = 40	0,0

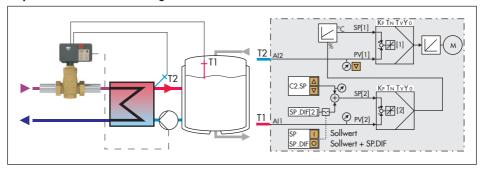
Bedienung		
Funktion [I]/[O]-Tasten	A1.1 = 1	[I] Start Regelung / [O] Stopp Regelung
Steuerung [I]/[O]-Tasten	A1.5 = 3	[1]/[O]-Tasten oder DI3

1.11 Begrenzungsregelung Kühlen Fernkälte mit Maximalauswahl der Sollwertführung und Start-/Stopp-Regelung mit DI4

Empfohlene Geräteausführung: [C]

Anlagenkennziffer 66

Mit den drei Pt-1000-Sensoren an den Analogeingängen Al1 bis Al3 werden die Sekundärvorlauftemperatur T2, die Sekundärrücklauftemperatur T1 und die Primärvorlauftemperatur T3 erfasst. Regler [1] und Regler [2] sind auf "Kühlen" eingestellt, d. h., die Regeldifferenz wird in beiden Reglern invertiert. Die Temperatur T2 stellt in diesem System den Istwert und C1.SP den Sollwert dar. Die jeweils größere funktionalisierte Temperatur T1 oder T3 wird zur Regelung herangezogen.


Die Position der Antriebsstange des im Primärrücklauf eingebauten Stellventils wird in Abhängigkeit des Sollwerts und des Istwerts mit dem integrierten Prozessregler geregelt. Dadurch wird die sekundärseitige Vorlauftemperatur T2 geregelt. Die Freigabe der Regelung kann extern über den Digitaleingang DI4 vorgenommen werden.

Im speziellen Fall wird bei Aktivieren der Sekundärkreispumpe ein potentialfreies, binäres Ausgangssignal der Pumpe genutzt, um die Regelung zu aktivieren oder zu stoppen.

Universaleingänge I1 bis I	4	
Funktion I1	11 = 3	Al1 (Pt 1000)
Funktion I2	12 = 3	Al2 (Pt 1000)
Funktion 13	I3 = 3	Al3 (Pt 1000)
Funktion I4	14 = 1	DI4 nicht invertiert
Regelung		
Regelungsart	M1 = 1	Begrenzung (MIN-Auswahl)
Wirkrichtung	M2 = 0	>> (steigend/steigend)
Regler [1]		
Quelle Istwert	C1.1 = 2	Istwert = AI2 nach Funktionalisierung
Faktor Al1	C1.2 = 0	Sollwert = C1.SP + Formel
Faktor AI2	C1.SP = 10,0 °C	
Divisor	C1.SP.MIN = 0 °C	
Quelle Sollwert	C1.SP.MAX	X = 40 °C
Sollwert	C1.e = 0.0	
Untere Einstellgrenze	C1.3 = 7	Regeldifferenz invertiert
Obere Einstellgrenze	C1.KP = 10	0,0
Funktion Regeldifferenz	C1.TN = 90) s
Regler [2]		
Quelle Istwert	C2.1 = 2	Istwert = Al2 nach Funktionalisierung
Quelle Sollwert	C2.2 = 7	Sollwert = C1.SP + Formel
Sollwert	C2.g = 1.0	
Untere Einstellgrenze	C2.3 = 7	Regeldifferenz invertiert
Obere Einstellgrenze	C2.KP = 10,0	
Funktion Regeldifferenz	C2.TN = 90) s
Bedienung		
Funktion [I]/[O]-Tasten	A1.1 = 1	[1] Start Regelung / [O] Stopp Regelung
Steuerung [1]/[O]-Tasten	A1.5 = 8	DI4

1.12 Kaskadenregelung Heizen mit zwei Sensoren und Sollwertumschaltung mit [I]/[O]-Tasten

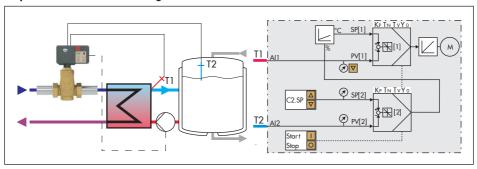
Empfohlene Geräteausführung: [B]

Anlagenkennziffer 70

Über die zwei Pt-1000-Sensoren an den Analogeingängen Al1 und Al2 werden die Hilfsregelgröße T2 und die Hauptregelgröße T1 erfasst.

Die Temperatur T1 stellt den Istwert PV [2] des Führungsreglers (Regler [2]) dar, die Temperatur T2 den Istwert PV [1] des Folgereglers (Regler [1]).

Bei der Kaskadenregelung ist der Ausgang des Führungsreglers (Regler [2]) der Sollwert des Folgereglers (Regler [1]). Der Sollwert des Folgereglers kann mithilfe der Einstellparameter C1.SP.MIN und C1.SP.MAX begrenzt werden.


Führungsregler und Folgeregler können getrennt voneinander konfiguriert und parametriert werden. Zur Parametrierung des Folgereglers (Regler [1]) muss die Kaskade geöffnet werden. Dafür muss dem Folgeregler der Sollwert C1.SP anstelle Ausgang Regler [2] als Quelle zugewiesen werden. Der Ausgang von Regler [1] wirkt auf den Antrieb. Dadurch wird die Position der Antriebsstange geregelt.

Zusätzlich kann mit den Parametern SP.DIF [1] und SP.DIF [2] über die Bedientasten [I]/[O] der Sollwert abgesenkt werden. Über den Schaltausgang L' ist es zusätzlich möglich, eine Pumpe anzusteuern. Mit einem internen Grenzkontakt LIM1 kann diese aus Energiespargründen über die Funktion M1 "LIM1 aktiv mit Nachlaufzeit" erst bei Überschreiten des Sollwerts des Folgereglers SP [1] ≥11 °C eingeschaltet werden.

	4		
Universaleingänge I1 bis I			
Funktion I1	11 = 3	Al1 (Pt 1000)	
Funktion I2	12 = 3	Al2 (Pt 1000)	
Funktion 13	13 = 0	Keine	
Funktion I4	14 = 0	Keine	
Schaltausgang			
Funktion	M4 = 1	Ein mit LIM1 / Aus mit Nachlaufzeit	
Nachlaufzeit	M4.T = 60	s	
Regelung			
Regelungsart	M1 = 5	Kaskade	
Wirkrichtung	M2 = 0	>> (steigend/steigend)	
Regler [1]			
Quelle Istwert	C1.1 = 2	Istwert = AI2 nach Funktionalisierung	
Quelle Sollwert	C1.2 = 7	Sollwert = Ausgang Regler [2]	
Untere Einstellgrenze	C1.SP.MIN	= 10 °C	
Obere Einstellgrenze	C1.SP.MAX	= 70 °C	
Nachstellzeit	C1.TN = 12	20 s	
Regler [2]			
Quelle Istwert	C2.1 = 1	Istwert = Al1 nach Funktionalisierung	
Quelle Sollwert	C2.2 = 6	Sollwert = C2.SP	
Sollwert	C2.SP = 50	°C	
Sollwert-Offset	C2.SP.DIF = -10 °C		
Untere Einstellgrenze	C2.SP.MIN	C2.SP.MIN = 10 °C	
Obere Einstellgrenze	C2.SP.MAX = 99 °C		
Proportionalitätsbeiwert	C2.KP = 2,0		
Nachstellzeit	C2.TN = 120 s		
Bedienung			
Funktion [I]/[O]-Tasten	A1.1 = 1	[1] Sollwert / [O] Sollwertabsenkung/-anhebung	
Steuerung [I]/[O]-Tasten	A1.5 = 4	[I]/[O]-Tasten	

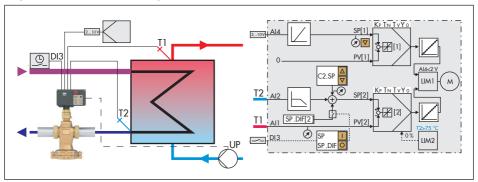
1.13 Kaskadenregelung Kühlen mit zwei Sensoren und Start-/ Stopp-Regelung mit [I]/[O]-Tasten

Empfohlene Geräteausführung: [B]

Anlagenkennziffer 80

Über die zwei Pt-1000-Sensoren an den Analogeingängen AI1 und AI2 werden die Hilfsregelgröße T1 und die Hauptregelgröße T2 erfasst. Die Temperatur T2 stellt den Istwert PV [2] des Führungsreglers (Regler [2]) dar, die Temperatur T1 den Istwert PV [1] des Folgereglers (Regler [1]). Bei der Kaskadenregelung ist der Ausgang des Führungsreglers (Regler [2]) der Sollwert des Folgereglers (Regler [1]). Der Sollwert des Folgereglers kann mithilfe der Einstellparameter C1.SP.MIN und C1.SP.MAX begrenzt werden. Führungsregler und Folgeregler können getrennt voneinander konfiguriert und parametriert werden. Zur Parametrierung des Folgereglers (Regler [1]) muss die Kaskade ge-

öffnet werden. Dafür muss dem Folgeregler der Sollwert C1.SP anstelle Ausgang Regler [2] zugewiesen werden. Der Ausgang von Regler [1] wirkt auf den Antrieb. Dadurch wird die Position der Antriebsstange geregelt.


Zusätzlich kann die Freigabe der Regelung mit den Bedientasten [I]/[O] vorgenommen werden.

Über den Schaltausgang L' ist es zusätzlich möglich, eine Pumpe anzusteuern. Mit einem internen Grenzkontakt LIM1 kann diese aus Energiespargründen über die Funktion M1 "LIM1 aktiv mit Nachlaufzeit" erst bei Unterschreiten des Sollwerts des Folgereglers SP [1] ≤39 °C eingeschaltet werden.

Universaleingänge I1 bis I	4		
Funktion I1	11 = 3	Al1 (Pt 1000)	
Funktion I2	12 = 3	Al2 (Pt 1000)	
Funktion I3	13 = 0	Keine	
Funktion I4	14 = 0	Keine	
Schaltausgang			
Funktion	M4 = 1	Ein mit LIM1 / Aus mit Nachlaufzeit	
Nachlaufzeit	M4.T = 60	s	
Regelung			
Regelungsart	M1 = 5	Kaskade	
Wirkrichtung	M2 = 0	>> (steigend/steigend)	
Regler [1]			
Quelle Istwert	C1.1 = 1	Istwert = AI1 nach Funktionalisierung	
Quelle Sollwert	C1.2 = 7	Sollwert = Ausgang Regler [2]	
Sollwert	C1.SP = 20 °C		
Untere Einstellgrenze	C1.SP.MIN	C1.SP.MIN = 5 °C	
Obere Einstellgrenze	C1.SP.MAX	= 40 °C	
Funktion Regeldifferenz	C1.3 = 7	Regeldifferenz invertiert	
Proportionalitätsbeiwert	C1.KP = 10	0,0	
Nachstellzeit	C1.TN = 90) s	
Regler [2]			
Quelle Istwert	C2.1 = 2	Istwert = AI2 nach Funktionalisierung	
Quelle Sollwert	C2.2 = 6	Sollwert = C2.SP	
Sollwert	C2.SP = 20	°℃	
Untere Einstellgrenze	C2.SP.MIN = 0 °C		
Obere Einstellgrenze	C2.SP.MAX	= 40 °C	
Funktion Regeldifferenz	C2.3 = 7	Regeldifferenz invertiert	
Proportionalitätsbeiwert	C2.KP = 10	0,0	
Nachstellzeit	C2.TN = 90) s	
Bedienung			
Funktion [I]/[O]-Tasten	A1.1 = 1	[I] Start Regelung / [O] Stopp Regelung	
Steuerung [I]/[O]-Tasten	A1.5 = 4	[I]/[O]-Tasten	

1.14 Stellungsgeber mit Regelung Heizen bei Ausfall mit Rücklauftemperaturbegrenzung und Sollwertabsenkung mit [I]/[O]-Tasten oder DI3

Empfohlene Geräteausführung: [D]

Anlagenkennziffer 95

Im Eingangssignalbereich 2 bis 10 V wirkt der Prozessregelantrieb als Stellungsgeber.

Dafür muss der Analogeingang Al4 z. B. von einem Reglerausgang 2 bis 10 V beschaltet werden. Unterschreitet der Spannungswert am Eingang Al4 U ≤2 V, wird über den internen Grenzkontakt LIM1 der Regler [2] aktiv geschaltet und eine Festwertregelung mit Rücklauftemperaturbegrenzung durchgeführt.

Über die zwei Pt-1000-Sensoren an den Analogeingängen Al1 und Al2 werden die Sekundärvorlauftemperatur T1 und die Primärrücklauftemperatur T2 erfasst. T1 stellt in diesem System den Istwert PV [2] dar. Über die Funktionalisierung des Eingangssignals Al2 ist die Kennlinie zur Rücklauftemperaturbegrenzung in Abhängigkeit der Primärrücklauftemperatur T2 hinterlegt. Der Sollwert vor dem Vergleicher SP [2] ergibt sich durch Addition der temperaturabhängigen Kennlinie nach der Funktionalisierung von T2 und dem Sollwert C1.SP.

Zusätzlich kann mit den Parametern SP.DIF [1] und SP.DIF [2] über die Bedientasten [I]/[O] oder extern über DI3 der Sollwert abgesenkt oder angehoben werden. Über den internen Grenzwert LIM2 ≥75 °C wird die Rücklauftemperatur T2 überwacht. Überschreitet diese 75 °C, wird das Ventil vollständig zugefahren (Parameter C2.YP = 0.0 %).

Die Position der Antriebsstange des im Primärrücklauf eingebauten Stellventils wird in Abhängigkeit des Sollwerts und des Istwerts mit dem integrierten Prozessregler geregelt.

Dadurch werden die sekundärseitige Vorlauftemperatur und die primärseitige Rücklauftemperatur geregelt und begrenzt.

Über den Schaltausgang L' ist es zusätzlich möglich, eine Pumpe anzusteuern.

Voreinstellungen am Regler

Universaleingänge I1 bis I4			
Funktion I1	11 = 3	Al1 (Pt 1000)	
Funktion I2	12 = 3	Al2 (Pt 1000)	
Funktion I3	13 = 1	DI3 nicht invertiert	
Funktion I4	14 = 1	Al4 (0 bis 10 V)	
Schaltausgang			
Funktion	M4 = 1	Ein mit LIM1 / Aus mit Nachlaufzeit	
Nachlaufzeit	M4.T = 0 s		
Regelung			
Regelungsart	M1 = 3	Regler [1] aktiv, wenn LIM1 = Aus Regler [2] aktiv, wenn LIM1 = Ein	
Wirkrichtung	M2 = 0	>> (steigend/steigend)	
Regler [1]			
Quelle Istwert	C1.1 = 0	Istwert = Formel	
Quelle Sollwert	C1.2 = 4	Sollwert = AI4 nach Funktionalisierung	
Proportionalbeiwert	C1.KP = 1,	C1.KP = 1,0	
Regler [2]			
Quelle Istwert	C2.1 = 1	Istwert = All nach Funktionalisierung	
Quelle Sollwert	C2.2 = 0	Sollwert = C2.SP + Formel	
Faktor AI2	C2.f = 1.0		
Sollwert	C2.SP = 80	0°℃	
Sollwert-Offset	C2.SP.DIF =	= -10,0 °C	
Untere Einstellgrenze	C2.SP.MIN	C2.SP.MIN = 10 °C	
Obere Einstellgrenze	C2.SP.MAX	C2.SP.MAX = 99 °C	
Proportionalbeiwert	C2.KP = 2,0		
Nachstellzeit	C2.TN = 120 s		
Bedienung			
Funktion [I]/[O]-Tasten	A1.1 = 2	[I] Sollwert / [O] Sollwertabsenkung/-anhebung	
Steuerung [1]/[O]-Tasten	A1.5 = 3	[1]/[O]-Tasten oder DI3	

Die Funktionen und Parameter werden in der Software TROVIS-VIEW eingestellt.

• HINWEIS

In der Software und am Regler werden die Dezimalstellen rechts vom Punkt dargestellt. Am Regler werden Dezimalstellen nur bei Werten zwischen 0 und 9,9 angezeigt.

2.1 Eingänge und Ausgänge

2.1.1 Universaleingänge I1 bis I4

Die Universaleingänge I1 bis I4 können als Analog- oder als Digitaleingang konfiguriert werden

- Digitaleingang (potentialfreier Kontakt)
 - Die Digitaleingänge können nicht-invertiert oder invertiert angesteuert werden.
- Analogeingang
 - Die als Analogeingänge konfigurierten Universaleingänge I1 bis I3 verarbeiten die Widerstandswerte eines am Prozessregelantrieb angeschlossenen Pt-1000-Sensors. Ein Leitungsabgleich ist nicht erforderlich.
 - Der als Analogeingang konfigurierte Universaleingang I4 verarbeitet ein Spannungssignal von 0 bis 10 V.
 - Mit Hilfe des Parameters 'Offset Al1'/'Offset Al2'/'Offset Al3'/'Offset Al4' wird das Eingangssignal des jeweiligen Eingangs um einen konstanten Betrag angehoben oder abgesenkt. Dadurch können systematische Messfehler korrigiert werden. Werkseitig erfolgt keine Korrektur der Messwerte.

• HINWEIS

Bei nicht-verschaltetem Universaleingang ist die Einstellung 'Keine' zu wählen.

Universaleingang I1/Universaleingang I2/Universaleingang I3

CO/PA	Bezeichnung	Wertebereich
11/12/13	Funktion	0: Keine
		1: DI1/DI2/DI3 nicht invertiert
		2: DI1/DI2/DI3 invertiert
		3: Al1 (Pt 1000)
AI1.COR/AI2.COR/AI3.COR*	Offset AI1/AI2/AI3	−9,9 +9,9 °C
* Parameter liegen im Ordner [Service > Inbetriebnahme] ab.		

Universaleingang 14

CO/PA	Bezeichnung	Wertebereich
14	Funktion	0: Keine
		1: DI4 nicht invertiert
		2: DI4 invertiert
		4: Al4 (0 10 V)
Al4.COR*	Offset AI4	-9,9 + 9,9 %
* Parameter liegt im Verzeichnis [Service > Inbetriebnahme] ab.		

2.1.2 Funktionalisierung Al1 bis Al4

Durch die Funktionalisierung wird ein Eingangssignal zur weiteren Verarbeitung neu bewertet. Wenn der Zusammenhang zwischen Eingangssignal und dem gewünschten neuen Ausgangssignal aus physikalischen Gesetzen, Erfahrungswerten oder ermittelten Werten bekannt ist, ist es mit der Funktionalisierung möglich, mess- oder verfahrenstechnisch bedingte Hilfs-, Bezugs- oder Äquivalenzgrößen in die für den Regelkreis passende Form zu bringen bzw. eine Linearisierung durchzuführen. Für die Funktionalisierung stehen zwei Koordinatenpunkte zur Verfügung, jeweils definiert durch einen Eingangs- und einen Ausgangswert.

Analogeingang AI1/Analogeingang AI2/Analogeingang AI3

CO/PA	Bezeichnung	Wertebereich
AI1.I1/AI2.I1/AI3.I1	Eingangssignal Punkt 1	−50 +149 °C
AI1.O1/AI2.O1/AI3.O1	Ausgangssignal Punkt 1	−50 +150 °C
AI1.I2/AI2.I2/AI3.I2	Eingangssignal Punkt 2	−49 +150 °C
AI1.O2/AI2.O2/AI3.O2	Ausgangssignal Punkt 2	−50 +150 °C

Analoaeinaana Al4

CO/PA	Bezeichnung	Wertebereich
Al4.l1	Eingangssignal Punkt 1	0,0 99,9 %
Al4.O1	Ausgangssignal Punkt 1	−50 +150 °C
Al4.l2	Eingangssignal Punkt 2	0,1 100,0 %
Al4.O2	Ausgangssignal Punkt 2	−50 +150 °C

2.1.3 Schaltausgang

Elektrische Prozessregelantriebe in der Geräteausführung [B] und [D] besitzen einen konfigurierbaren Schaltausgang. Die Konfiguration bestimmt, bei welchem Ereignis das Signal am Schaltausgang wechselt. Diese Funktion dient hauptsächlich zur Pumpensteuerung, sie kann aber auch beispielsweise zur Grenzwert- oder Störmeldung genutzt werden.

- Ein mit LIM1/LIM2 / Aus mit Nachlaufzeit

Der Schaltausgang ist eingeschaltet, wenn die Bedingungen für die Grenzwertfunktion "Interner Grenzwert LIM1" bzw. "Interner Grenzwert LIM2" erfüllt sind, vgl. Kapitel 2.2.4. Ist dies nicht mehr der Fall, dann wird der Schaltausgang nach Ablauf der 'Nachlaufzeit' ausgeschaltet.

- Ein bei Hub >0 % / Aus bei 0 % mit Nachlaufzeit

Der Schaltausgang ist eingeschaltet, wenn der Hub an der Antriebsstange größer 0 % ist. Erreicht der Hub 0 %, dann wird der Schaltausgang nach Ablauf der 'Nachlaufzeit' ausgeschaltet.

Ein bei Hub <100 % / Aus bei 100 % mit Nachlaufzeit

Der Schaltausgang ist eingeschaltet, wenn der Hub an der Antriebsstange kleiner 100 % ist. Erreicht der Hub 100 %, dann wird der Schaltausgang nach Ablauf der 'Nachlaufzeit' ausgeschaltet.

Störung aktiv

Der im Normalfall ausgeschaltete Schaltausgang wird eingeschaltet, wenn am elektrischen Prozessregelantrieb eine Störung anliegt, erkennbar an der blinkenden Anzeige E0 bis E9 im Display.

Fester Stellwert Antrieb [1]/Antrieb [2] erreicht

Der im Normalfall ausgeschaltete Schaltausgang wird eingeschaltet, sobald der feste Stellwert des gewählten Reglers [1] oder [2] erreicht ist und die unter C1.4 eingestellte Funktion (geschalteter Digitaleingang oder interner Grenzwert erreicht) aktiv ist, vgl. Kapitel 2.3.5. Sobald die Funktion "Fester Stellwert Antrieb [1]/Antrieb [2] erreicht" nicht mehr aktiv ist, wird der Schaltausgang erneut ausgeschaltet. Diese Funktion ist nur wirksam mit der Einstellung C1.4 ≠ 0.

Handbetrieb aktiv

Der im Normalfall ausgeschaltete Schaltausgang wird eingeschaltet, wenn der elektrische Prozessregelantrieb im Vor-Ort-Handbetrieb betrieben wird.

Durch Umkehren der Logik kann die Funktionsweise des Schaltausgangs invertiert werden (Parameter 'Logik').

CO/PA	Bezeichnung	Wertebereich
M4	Funktion	0: Keine
		1: Ein mit LIM1 / Aus mit Nachlaufzeit
		2: Ein mit LIM2 / Aus mit Nachlaufzeit
		3: Ein bei Hub >0 % / Aus bei 0 % mit Nachlaufzeit
		4: Ein bei Hub <100 % / Aus bei 100 % mit Nachlaufzeit
		5: Störung aktiv
		6: Fester Stellwert Antrieb [1] erreicht
		7: Fester Stellwert Antrieb [2] erreicht
		8: Handbetrieb aktiv
M4.T	Nachlaufzeit	0 bis 999 s
M5	Logik	0: Nicht invertiert
		1: Invertiert

2.2 Regelung

2.2.1 Anlagenkennziffer

Der elektrische Prozessregelantrieb kann mit Hilfe von Anlagenkennziffern über TROVIS-VIEW für eine bestimmte Anwendung vorkonfiguriert werden. Mit einer Anlagenkennziffer ≠0 sind nur die Parameter anwählbar, die für die gewählte Anwendung benötigt werden.

Wenn die Anlagenkennziffer 0 "Benutzerdefiniert" eingestellt ist, dann ist der Prozessregelantrieb frei konfigurierbar.

CO/PA	Bezeichnung	Wertebereich
MO	Anlagenkennziffer	0: Benutzerdefiniert
		Heizen
		1: Heizen · Festwertregelung · Mit 1 Sensor · Interne Sollwertab- senkung

CO/PA	Bezeichnung	Wertebereich
MO	Anlagenkennziffer	10: Heizen · Festwertregelung · Temperaturmittelwertbildung über 2 Sensoren · Interne Sollwertabsenkung
		30: Heizen · Folgeregelung · Rücklauftemperaturbegrenzung · Interne Sollwertabsenkung
		35: Heizen · Folgeregelung · Witterungsgeführt, Rücklauftemperaturbegrenzung · Externe Sollwertabsenkung mit DI4
		50: Heizen · Begrenzungsregelung mit Minimalauswahl · Rück- lauftemperaturbegrenzung · Interne Sollwertabsenkung
		55: Heizen · Begrenzungsregelung mit Minimalauswahl · Witte- rungsgeführt, Rücklauftemperaturbegrenzung · Externe Soll- wertabsenkung mit DI4
		95: Heizen · Stellungsgeber / Festwert-/Folgeregelung · 2–10 V Stellungsgeber / 0–2 V Festwert-/Folgeregelung · Rücklauftemperaturbegrenzung, Sollwertabsenkung mit DI3
		Kühlen
		20: Kühlen · Festwertregelung · Differenztemperatur zwischen 2 Sensoren · Start-/Stopp-Regelung
		21: Kühlen · Festwertregelung · Temperaturmittelwertbildung über 2 Sensoren · Start-/Stopp-Regelung
		60: Kühlen · Begrenzungsregelung mit Minimalauswahl · Diffe- renztemperatur zwischen 2 Sensoren, Rücklauftemperaturbe- grenzung · Start-/Stopp-Regelung
		65: Kühlen · Begrenzungsregelung mit Minimalauswahl · Diffe- renztemperatur zwischen 2 Sensoren, Rücklauftemperaturbe- grenzung · Start-/Stopp-Regelung
		66: Kühlen · Begrenzungsregelung Fernkälte · Minimalauswahl der Sollwertführung · Start-/Stopp-Regelung mit DI4
		70: Heizen · Kaskadenregelung · Mit 2 Sensoren · Interne Sollwert- umschaltung
		80: Kühlen · Kaskadenregelung · Mit 2 Sensoren · Start-/ Stopp-Regelung

2.2.2 Regelungsart

Mit der Auswahl der Regelart wird die Grundstruktur, z. B. Festwert-/Folgeregelung im integrierten Regler des Prozessregelantriebs festgelegt. Der Prozessregelantrieb verfügt über zwei integrierte Regler, die folgende Regelungsarten unterstützen:

Festwert-/Folgeregelung

Bei der Festwert- und Folgeregelung ist der Regler [1] aktiv. Bei der Festwertregelung wird für den Sollwert SP [1] ein konstanter Wert vorgegeben, vgl. Kapitel 2.3.2 (Einstellung C1.2 = 5/6).

Bei der Folgeregelung ist der Sollwert SP [1] nicht konstant, sondern ändert sich mit der Zeit. Er wird entweder über einen oder mehrere Analogeingänge oder über den Stellwert des Reglers [2] vorgegeben, vgl. Kapitel 2.3.2 (Einstellung C1.2 = 0/1/2/3/4/7).

Begrenzungsregelung

Die Aufgabe der Begrenzungsregelung ist es, eine Prozessgröße zu regeln, ohne dass eine zweite Prozessgröße einen vorbestimmten Wert über- oder unterschreitet. Beide Prozessgrößen werden durch die Stangenposition am Ventil geändert und sind somit physikalisch voneinander abhängig. Bei der Begrenzungsregelung wirken beide Regler [1] und [2] über eine Minimal- oder Maximalauswahl der internen Stellsignale. Je nach Regelaufgabe wird jeweils das größere oder kleinere Stellsignal auf das Stellglied geschaltet. Bei Minimalauswahl ist immer der Regler mit der kleineren Stellgröße, bei Maximalauswahl der Regler mit der größeren Stellgröße im Eingriff.

Die Begrenzungsregelung mit Minimalauswahl der Stellgröße wird gewählt, wenn eine Prozessgröße geregelt und die andere Prozessgröße auf einen Maximalwert begrenzt werden soll.

Die Begrenzungsregelung mit Maximalauswahl der Stellgröße wird gewählt, wenn eine Prozessgröße geregelt und die andere Prozessgröße auf einen Minimalwert begrenzt werden soll.

Nach Auswahl der Regelungsart werden Regler [1] und Regler [2] getrennt voneinander konfiguriert.

Regler [1] aktiv, wenn LIM1 = Aus / Regler [2] aktiv, wenn LIM1 = Ein
 Abhängig von der internen Grenzwerttemperatur LIM1 (vgl. Kapitel 2.2.1) wird zwischen
 Regler [1] und Regler [2] umgeschaltet.

Regler [1] aktiv, wenn LIM2 = Aus / Regler [2] aktiv, wenn LIM2 = Ein vgl. "Regler [1] aktiv, wenn LIM1 = Aus / Regler [2] aktiv, wenn LIM1 = Ein"

- Regler [1] aktiv, wenn DI1 = Aus /Regler [2] aktiv, wenn DI1 = Ein
 Abhängig vom Schaltzustand des Digitaleingangs DI1 wird zwischen Regler [1] und Regler [2] umgeschaltet.
- Regler [1] aktiv, wenn DI2 = Aus / Regler [2] aktiv, wenn DI2 = Ein
 vgl. "Regler [1] aktiv, wenn DI1 = Aus / Regler [2] aktiv, wenn DI1 = Ein"
- Regler [1] aktiv, wenn DI3 = Aus / Regler [2] aktiv, wenn DI3 = Ein vgl. "Regler [1] aktiv, wenn DI1 = Aus / Regler [2] aktiv, wenn DI1 = Ein"

Regler [1] aktiv, wenn DI4 = Aus /Regler [2] aktiv, wenn DI4 = Ein
 vgl. "Regler [1] aktiv, wenn DI1 = Aus /Regler [2] aktiv, wenn DI1 = Ein"

Kaskadenregelung

Bei der Kaskadenregelung ist der Ausgang des Führungsreglers (Regler [2]) der Sollwert des Folgereglers (Regler [1]). Die Parameter C1.SP.MAX und C1.SP.MIN begrenzen das Führungssignal nach oben und unten (C1.SP.MIN entspricht 0 % von Y [2]; C1.SP.MAX entspricht 100 % von Y [2]).

Nach Auswahl der Regelungsart werden Regler [1] und Regler [2] getrennt voneinander konfiguriert. Zur Parametrierung des Folgereglers (Regler [1]) muss die Kaskade geöffnet werden. Dafür muss dem Folgeregler der Sollwert C1.SP anstelle Ausgang Regler [2] zugewiesen werden. Der Ausgang von Regler [1] wirkt auf den Antrieb. Dadurch wird die Position der Antriebsstange geregelt.

CO/PA	Bezeichnung	Wertebereich	
M1	Regelungsart	0: Festwert/Folge	
		1: Begrenzung (MIN-Auswahl)	
		2: Begrenzung (MAX-Auswahl)	
		3: Regler [1] aktiv wenn LIM1 = Aus / Regler [2] aktiv wenn LIM1=	Ein
		4: Regler [1] aktiv wenn LIM2 = Aus / Regler [2] aktiv wenn LIM2=	Ein
		5: Regler [1] aktiv wenn DI1 = Aus / Regler [2] aktiv wenn DI1 = E	in
		6: Regler [1] aktiv wenn DI2 = Aus / Regler [2] aktiv wenn DI2 = E	in
		7: Regler [1] aktiv wenn DI3 = Aus / Regler [2] aktiv wenn DI3 = E	in
		8: Regler [1] aktiv wenn DI4 = Aus / Regler [2] aktiv wenn DI4 = E	in
		9: Kaskade	
C1.SP.M	IN, C1.SP.MAX	vgl. Kapitel 2.3.2	

2.2.3 Wirkrichtung

Die Wirkrichtung des Prozessregelantriebs kann mit dieser Einstellung verändert werden.

Steigend/steigend

- Istwert < Sollwert: Antriebsstange fährt ein
- Istwert > Sollwert: Antriebsstange f\u00e4hrt aus

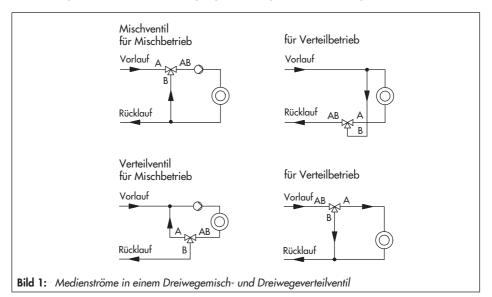
Steigend/fallend

- Istwert < Sollwert: Antriebsstange fährt aus
- Istwert > Sollwert: Antriebsstange fährt ein

Antriebsstange ausgefahren

Bei Durchgangsventil: Ventil geschlossen

Bei Dreiwegemischventil: Durchgang A -> AB geöffnet, B -> AB geschlossen (vgl. Bild 1)

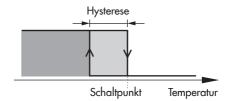

Bei Dreiwegeverteilventil: Durchgang AB -> A geschlossen, AB -> B geöffnet

Antriebsstange eingefahren

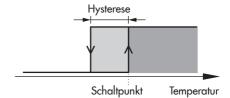
Bei Durchgangsventil: Ventil geöffnet

Bei Dreiwegemischventil: Durchgang A -> AB geschlossen, B -> AB geöffnet (vgl. Bild 1)

Bei Dreiwegeverteilventil: Durchgang AB -> A geöffnet, AB -> B geschlossen



CA/PA	Bezeichnung	Wertebereich	
M2	Wirkrichtung	0: >> (steigend/steigend)	
		1: <> (steigend/fallend)	


2.2.4 Interne Grenzwerte LIM1 und LIM2

Der Grenzwerttemperatur können unterschiedlichste Mess-, Ist- und Sollwerte zugeordnet werden (LIM1.S). Mithilfe des Parameters LIM1.F kann weiterhin bestimmt werden, ob der Grenzwert bei Über- oder Unterschreiten des Schaltpunkts wirkt.

Mit der Einstellung "Quelle (Signal) ≤ LIM1/ LIM2" wird die Grenzwertfunktion LIM1/LIM2 wieder deaktiviert, wenn die Temperatur den Wert 'Schaltpunkt' + 'Hysterese' erreicht hat.

Bei der Einstellung "Quelle (Signal) ≥ LIM1/ LIM2" wird die Grenzwertfunktion LIM1/ LIM2 wieder deaktiviert, wenn die Temperatur 'Schaltpunkt' – 'Hysterese' erreicht hat.

Mit der Einstellung LIM1 = 0 hat der interne Grenzwert keine Funktion.

	· ·			
CO/PA	Bezeichnung	Wertebereich		
LIM1.S	Interner Grenzwert LIM1	1: Messwert Al1		
LIM2.S	Interner Grenzwert LIM2	2: Messwert All nach Funktionalisierung		
	Quelle	3: Messwert Al2		
		4: Messwert Al2 nach Funktionalisierung		
		5: Messwert Al3		
		6: Messwert AI3 nach Funktionalisierung		
		7: Messwert Al4		
				8: Messwert Al4 nach Funktionalisierung
		9: Istwert [1] vor Vergleicher		
		10: Sollwert [1] vor Vergleicher		
		11: Regeldifferenz [1] vor Vergleicher		
		12: Istwert [2] vor Vergleicher		
		13: Sollwert [2] vor Vergleicher		
		14: Regeldifferenz [2] vor Vergleicher		
		15: Sollwert vom Programmgeber		

CO/PA	Bezeichnung	Wertebereich
LIM1.F	Interner Grenzwert LIM1	0: Keine
LIM2.F Interner Grenzwert LIM2	1: Quelle (Signal) ≤ LIM1/LIM2	
	Funktion	2: Quelle (Signal) ≥ LIM1/LIM2
LIM1.P	Interner Grenzwert LIM1	−50 bis +150 °C
LIM2.P	Interner Grenzwert LIM2 Schaltpunkt	−50 bis +150 °C
LIM1.H	Interner Grenzwert LIM1	0,5 bis 10,0 °C
LIM2.H	Interner Grenzwert LIM2 Hysterese	0,5 bis 10,0 °C

2.3 Regler [1]

2.3.1 Istwert

Dem Regler [1] kann als Quelle das funktionalisierte Eingangssignal eines einzelnen Analogeingangs oder eine – über eine Formel verknüpfte – Kombination aus den Eingangssignalen verschiedener Analogeingänge zugewiesen werden.

Für die Regelung komplexer Regelungsaufgaben kann der Istwert unter Berücksichtigung der Analogeingänge durch Summen-, Differenz- oder Mittelwertbildung mit und ohne Gewichtung berechnet werden.

CA/PA	Bezeichnung	Wertebereich
C1.1	Quelle	0: Istwert = $\frac{C1.a * A11 + C1.b * A12 + C1.c * A13 + C1.d * A14}{C1.z}$
		1: Istwert = AI1 nach Funktionalisierung
		2: Istwert = AI2 nach Funktionalisierung
		3: Istwert = Al3 nach Funktionalisierung
		4: Istwert = AI4 nach Funktionalisierung
C1.a	Faktor Al1	-9,0 bis +99,0
C1.b	Faktor AI2	-9,0 bis +99,0
C1.c	Faktor AI3	-9,0 bis +99,0
C1.d	Faktor Al4	-9,0 bis +99,0
C1.z	Divisor	1,0 bis 99,0

2.3.2 Sollwerteinstellung

Sollwert kann ein Eingangswert nach Funktionalisierung, feste Werte, der Stellwert des Reglers [2] oder der Programmgeber sein. Der Sollwert kann auch durch Summen- oder Differenzbildung aus einem festen Sollwert und den an den Analogeingängen eingehenden Werten gebildet werden. Die Differenz- und Summenbildung ist auch in Kombination mit dem Programmgeber möglich.

Mit Hilfe des Parameters 'Sollwert-Offset' kann der Sollwert um einen konstanten Betrag angehoben oder abgesenkt werden. Diese Funktion dient z. B. der Tag-/Nachtabsenkung. Liegt der anliegende Sollwert ober- oder unterhalb der eingestellten Einstellgrenzen, dann wird der wirksame Sollwert auf den maximalen bzw. minimalen Wert begrenzt.

CA/PA	Bezeichnung	Wer	tebereich
C1.2	Quelle	0:	Sollwert = C1.SP + C1.e * AI1 + C1.f * AI2 + C1.g * AI3 + C1.h * AI4
		1:	Sollwert = AI1 nach Funktionalisierung
		2:	Sollwert = AI2 nach Funktionalisierung
		3:	Sollwert = AI3 nach Funktionalisierung
		4:	Sollwert = AI4 nach Funktionalisierung
Für Regler [2	gilt abweichend C2.2 = 7:	5:	Sollwert = $C1.SP$
Sollwert = C1	.SP+	6:	Sollwert = C2.SP
C2.e *AI1 + C2.	C2.e *AI1 + C2.f * AI2 + C2.g * AI3 + C2.h * AI4		Sollwert = Ausgang Regler [2]
		8:	Sollwert = Programmgeber
		9:	Sollwert = Programmgeber +
			(C1.SP + C1.e * Al1 + C1.f * Al2 + C1.g * Al3 + C1.h * Al4)
C1.SP	Sollwert	-50	,0 bis +150,0 °C
C1.SP.DIF	Sollwert-Offset	-50	,0 bis +150,0 °C
C1.SP.MIN	Untere Einstellgrenze	-50	bis +150 °C
C1.SP.MAX	Obere Einstellgrenze	-50	bis +150 °C
C1.e	Faktor Al1	-9,0) bis +99,0
C1.f	Faktor AI2	-9,0) bis +99,0
C1.g	Faktor AI2	-9,0) bis +99,0
C1.h	Faktor AI2	-9,0) bis +99,0

Programmgeber

Über den Programmgeber ist es möglich, den Sollwert über einen zeitlichen Verlauf (max. 1 Woche = 10080 min) vorzugeben. Dazu werden jeweils elf Wertepaare Sollwert zu Zeit vorgegeben. Weiterhin kann das Verhalten nach Programmablauf festgelegt werden.

CA/PA	Bezeichnung	Wer	tebereich
A0.1	Verhalten nach	1:	Regelung aktiv, letzter Sollwert bleibt erhalten
	Programmablauf	2:	Regelung aktiv, Programm wird zyklisch wiederholt
		3:	Regelung inaktiv, Stellwert Antrieb ist 0 %
		4:	Regelung inaktiv, Stellwert Antrieb ist 100 %

2.3.3 Regeldifferenz

Die Regeldifferenz lässt sich abhängig von einem der vier Digitaleingänge oder abhängig von einem internen Grenzwert invertieren.

- Invertiert mit DI1/DI2/DI3/DI4
 Bei geschlossenem Digitaleingang (1-Signal) wird die Regeldifferenz invertiert.
- Invertiert mit LIM1/LIM2
 Bei Erreichen der internen Grenzwerttemperatur (vgl. Kapitel 2.2.1) wird die Regeldifferenz invertiert

CA/PA	Bezeichnung	Wertebereich	
C1.3	Funktion Regeldifferenz	0:	Nicht invertiert
		1:	Invertiert mit DI1
		2:	Invertiert mit DI2
		3:	Invertiert mit DI3
		4:	Invertiert mit DI4
		5:	Invertiert mit LIM1
		6:	Invertiert mit LIM2
		7	Invertiert

9 HINWEIS

Die Regeldifferenz kann auch über die Funktion C1.2 umgekehrt werden.

2.3.4 PID-Regler

Über die Regelparameter 'Proportionalbeiwert', 'Nachstellzeit', 'Vorhaltezeit' und 'Arbeitspunkt' kann der wirksame Regelalgorithmus eingestellt werden. Werkseitig ist der Prozessregelantrieb auf PI-Verhalten eingestellt (C1.TV = 0 s).

Proportionalbeiwert C1.KP

Der Proportionalbeiwert wirkt auf den P-, I- und D-Anteil. Je größer der Proportionalbeiwert beim P-Regler umso größer ist die Stellgrößen-Amplitude. Der Proportionalbeiwert C1.KP bezieht sich auf die Messspanne von 100 °C. So ergibt sich bei einer Regeldifferenz von 5 °C und einem Proportionalbeiwert von 2 ein Hub von 10 %.

Nachstellzeit C1.TN

Die Nachstellzeit ist die Kenngröße des I-Anteils. Die Nachstellzeit ist diejenige Zeitspanne, welche bei der Sprungantwort eines PI-Reglers benötigt wird, um aufgrund der Integralwirkung eine gleich große Stellgrößenänderung zu erzielen, wie sie infolge des P-Anteils entsteht. Die Vergrößerung der Nachstellzeit bewirkt bei konstanter Regeldifferenz eine Abnahme der Stellgrößen-Änderungsgeschwindigkeit.

Vorhaltzeit C1.TV

Die Vorhaltzeit ist die Kenngröße des D-Anteils. Die Vorhaltzeit ist diejenige Zeitspanne, um welche die Anstiegsantwort eines PD-Reglers einen bestimmten Wert der Stellgröße früher erreicht, als er ihn infolge seines P-Anteils allein erreichen würde. Die Vergrößerung der Vorhaltzeit bewirkt bei konstanter Regeldifferenz-Änderungsgeschwindigkeit (Änderungsrate) eine Vergrößerung der Stellgrößen-Amplitude. Nach sprungförmiger Änderung der Regeldifferenz bewirkt eine größere Vorhaltzeit ein längeres Nachwirken (Abklingen) des D-Anteils.

- Arbeitspunkt C1.Y0

Der Arbeitspunkt des P- oder PD-Reglers gibt den Stellwert an, der bei Istwert = Sollwert an die Regelstrecke gegeben wird. Der Arbeitspunkt ist normalerweise nur für P und PD-Regler wichtig, kann aber wegen der möglichen Begrenzung des I-Anteils auch bei den Regelverhalten PI, PID und I eingestellt werden. Bei den Regelverhalten mit I-Anteil kann der Arbeitspunkt auch als Startwert für den Wiederanlauf eingesetzt werden.

CA/PA	Bezeichnung	Wertebereich
C1.KP	Proportionalbeiwert	0,1 bis 999,9
C1.TN	Nachstellzeit	0 bis 999 s
C1.TV	Vorhaltzeit	0 bis 999 s
C1.Y0	Arbeitspunkt	0,0 bis 100,0 %

2.3.5 Stellgröße

Die im Regelbetrieb ermittelte Stellgröße kann abhängig von einem der vier Digitaleingänge oder abhängig von einem internen Grenzwert deaktiviert werden. In diesem Fall gibt der Prozessregelantrieb einen festen Stellwert aus.

Fester Stellwert Antrieb mit DI1/DI2/DI3/DI4

Bei geschlossenem Digitaleingang (1-Signal) fährt der Prozessregelantrieb die Antriebsstange auf die durch C1.YP vorgegebene Position.

Fester Stellwert Antrieb mit LIM1/LIM2

Bei Erreichen der internen Grenzwerttemperatur (vgl. Kapitel 2.2.1) fährt der Prozessregelantrieb die Antriebsstange auf die durch C1.YP vorgegebene Position.

CA/PA	Bezeichnung	We	rtebereich
C1.4	Funktion Stellgröße	0:	Stellwert Regler
		1:	Fester Stellwert Antrieb mit DI1
		2:	Fester Stellwert Antrieb mit DI2
		3:	Fester Stellwert Antrieb mit DI3
		4:	Fester Stellwert Antrieb mit DI4
		5:	Fester Stellwert Antrieb mit LIM1
		6:	Fester Stellwert Antrieb mit LIM2
C1.YP	Fester Stellwert Antrieb	0,0	bis 100,0 %

2.4 Regler [2]

Die Funktionen des Reglers [2] entsprechen im Wesentlichen denen des Reglers [1], vgl. Kapitel 2.3.

Lediglich die Parametereinstellung C1.2 = 7 weicht von der des Reglers [1] ab. Hier gilt abweichend zu Kapitel 2.3.2: Sollwert = C1.SP + C2.e * AI1 + C2.f * AI2 + C2.g * AI3 + C2.h * AI3

2.5 Antriebsfunktionen

2.5.1 Antriebsparameter

Endlagenführung

Bei aktiver Endlagenführung fährt die Antriebsstange vorzeitig in die Endlagen:

Endlagenführung Stange ausgefahren

Erreicht der Sollwert den Wert 'Endlagenführung Stange ausgefahren', fährt die Antriebsstange nach Ablauf der 'Pausenzeit während Endlagenführung' in die untere Endlage.

- Endlagenführung Stange eingefahren

Erreicht der Sollwert den Wert 'Endlagenführung Stange eingefahren', fährt die Antriebsstange nach Ablauf der 'Pausenzeit während Endlagenführung' in die obere Endlage.

9 HINWEIS

Mit der Einstellung 'Endlagenführung Stange ausgefahren' = 0,0 % und "Endlagenführung Stange eingefahren' = 100,0 % ist die Endlagenführung deaktiviert.

CA/PA	Bezeichnung	Wertebereich
MY.EA	Endlagenführung Stange ausgefahren	0,0 bis 100,0 %
MY.EE	Endlagenführung Stange eingefahren	0,0 bis 100,0 %
MY.TE	Pausenzeit während Endlagenführung	0 bis 99 s

Totzone (Schaltbereich)

Über die Totzone wird die Empfindlichkeit des Antriebs bestimmt. Erst die Änderung des Stellwerts um den eingestellten Wert bewirkt eine minimale Änderung der Stangenposition.

CA/PA	Bezeichnung	Wertebereich
MY.TZ	Totzone (Schaltbereich)	0,5 bis 5,0 %

2.5.2 Verhalten bei Signalstörung

Der Prozessregelantrieb überwacht während des Regelbetriebs die Signale an den Analogeingängen AI1 bis AI3. Für den Fall einer Signalstörung kann dem Regler das Verhalten vorgegeben werden:

Letzter Hubwert

Solange eine Signalstörung vorliegt, verharrt der Prozessregelantrieb auf seinem letzten Stellwert

Fester Stellwert

Solange eine Signalstörung vorliegt, fährt der Prozessregelantrieb den vorgegebenen festen Stellwert A7.YP.ERR an und verharrt auf diesem.

CA/PA	Bezeichnung	Wertebereich	
A7.1	Funktion Signalstörung	0: Letzter Hubwert	
		1: Fester Stellwert	
A7.YP.ERR	Fester Stellwert	0,0 bis 100,0 %	

2.5.3 Nullpunktabgleich

Mit dieser Funktion wird die Endlage (Stange eingefahren oder Stange ausgefahren) für den Nullpunktabgleich festgelegt.

• HINWEIS

Der Nullpunktabgleich startet automatisch bei einem Gerätestart oder Wiederanlauf. Manuell wird er mit der Software TROVIS-VIEW gestartet. Dazu den Ordner [Service > Funktionen] aufrufen und den Parameter 'Nullpunktabgleich starten' ausführen.

CA/PA	Bezeichnung	Wertebereich	
A8.1	Nullpunktabgleich	0:	Stange ausfahren
		1:	Stange einfahren

2.5.4 Wiederanlaufbedingung

Bei Unterbrechung der Versorgungsspannung startet der Regler gemäß der eingestellten Wiederanlaufbedingung.

CA/PA	Bezeichnung	Wertebereich	
A8.2	Wiederanlaufbedingung	0:	Start mit letztem Bedienzustand
		1:	Start mit Bedienfunktion [O]
		2:	Start mit Bedienfunktion [I]

2.5.5 Blockierschutz

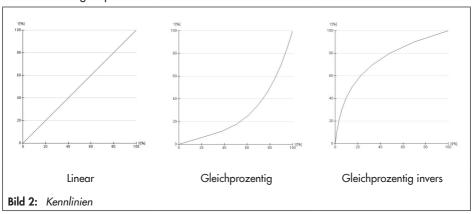
Der Blockierschutz verhindert, dass sich das Ventil festsetzt. Befindet sich die Antriebsstange in der Schließstellung (0 %), wird sie alle 24 Stunden nach ihrer letzten Bewegung bis auf 2 mm Hub auf- und wieder zugefahren.

CA/PA	Bezeichnung	Wertebereich	
A8.3	Blockierschutz	0: Nein	
		1: Ja	

2.5.6 Kennlinie Stellwert

Die Kennlinie beschreibt das Übertragungsverhalten zwischen dem Stellwert und dem Hub des Antriebs. Sie kann linear oder benutzerdefiniert eingestellt werden.

Linear


Der Hub folgt proportional dem Stellwert.

Gleichprozentig

Der Hub folgt exponentiell dem Stellwert.

- Gleichprozentig invers

Der Hub folgt exponentiell invers dem Stellwert.

Benutzerdefiniert

Ausgehend von der zuletzt gewählten Kennlinie kann eine neue Kennlinie über elf Punkte definiert werden.

CA/PA	Bezeichnung	Wert	eber	eic	h									
M6	Kennlinientyp	0:	Line	ar										
		1:	1: Gleichprozentig											
		2:	2: Gleichprozentig invers											
		3:	B: Benutzerdefiniert											
			# 1 2 3 4 5 6 7 8 9 10 11				11							
			Х	0	10,0	20,0	30,0	40,0	50,0	60,0	70,0	80,0	90,0	100,0
			Υ	0	10,0	20,0	30,0	40,0	50,0	60,0	70,0	80,0	90,0	100,0

2.6 Bedienung

2.6	5.1 [I]/[O]-Einstellungen	
	n Tasten 🔲 und 🔘 sowie den einzelnen Digi on mit einem der vier Digitaleingänge versch	
-	[I] Start Regelung / [O] Stopp Regelung	
	Regelbetrieb starten.	Regelbetrieb beenden.
	Anzeigen: "on" für die Dauer der Anfahrzeit, dann der durch die Funktion A3.1 vorgegebene Wert, vgl. Kapitel 2.7.1.	Anzeigen: "-" abwechselnd blinkend rechts und links für die Dauer der Nachlauf- zeit "" bei unterbrochenem Regelbetrieb
	Die Dauer der Anfahrzeit wird im Parameter A1.T.ON eingestellt. Während der Anfahrzeit fährt die Antriebsstange auf den vorgegebenen Stellwert A1.YP.ON.	Die Dauer der Nachlaufzeit wird im Para- meter A1.T.OFF eingestellt. Während der Nachlaufzeit fährt die Antriebsstange auf den vorgegebenen Stellwert A1.YP.OFF.
	Die Einstellung der Parameter kann mit der	Software TROVIS-VIEW geändert werden.
_	[I] Sollwert / [O] Sollwertanhebung/-absen	kung
	Auf Sollwert regeln.	Sollwert anheben/absenken. Die Höhe der Sollwertanhebung/-absenkung wird durch den Parameter C1.SP.DIF bzw. C2.SP.DIF eingestellt, vgl. Kapitel 2.3.2.
_	[I] Externer Sollwert / [O] Interner Sollwert	
	Externen Sollwert aktivieren.	Internen Sollwert aktivieren.
_	[I] Start/Halt Programmgeber / [O] Abbruc	h Programmgeber
	Programmgeber starten und stoppen.	Programmgeber abbrechen.
	Das erneute Starten des gestoppten Programmgebers (vgl. Kapitel 2.3.2) bewirkt, dass der Programmverlauf fortgesetzt wird.	Das erneute Starten des Programm- gebers (vgl. Kapitel 2.3.2) nach Ab- bruch bewirkt, dass der Programm- verlauf von Beginn gestartet wird.

CA/PA	Bezeichnung	Wertebereich
A1.1	Funktion [I]/[O]-Tasten	0: Keine Funktion
		1: [I] Start Regelung / [O] Stopp Regelung
		2: [I] Sollwert / [O] Sollwertanhebung/-absenkung
		3: [I] Externer Sollwert / [O] Interner Sollwert
		4: [1] Start/Halt Programmgeber / [O] Abbruch Programmgeber
A1.5	Steuerung	0: [I]/[O]-Tasten
		1: [I]/[O]-Tasten oder DI1
		2: [I]/[O]-Tasten oder DI2
		3: [I]/[O]-Tasten oder DI3
		4: [I]/[O]-Tasten oder DI4
		5: DI1
		6: DI2
		7: DI3
		8: DI4
A1.T.ON	Anfahrzeit nach Start	0 bis 999 s
A1.YP.ON	Stellwert während Anfahrfunktion	0,0 bis 100,0 %
A1.T.OFF	Nachlaufzeit nach Stopp	0 bis 999 s
A1.YP.OFF	Stellwert nach Nachlaufzeit	0,0 bis 100,0 %

• HINWEIS

Mit der Einstellung A1.1 = 2 oder 3 und A1.5 = 1, 2, 3 oder 4 kann die Bedienfunktion sowohl vom Digitaleingang als auch von den [I]/[O]-Tasten gesteuert werden (Automatikebene, Anzeige im Display "Au"). Durch Wechsel in die Funktionsebene (Anzeige "Fu") wird die Bedienfunktion ausschließlich durch die [I]/[O]-Tasten gesteuert.

Der Wechsel aus der Automatik- in die Funktionsebene erfolgt durch einmaliges Drücken der [I]- oder [O]-Taste. Zum Wechsel aus der Funktions- in die Automatikebene muss die [O]-Taste drei Sekunden lang gedrückt werden.

2.7 [Auf]/[Ab]-Einstellungen

Funktion [Auf]-Taste

Mit der Taste \triangle können konfigurationsabhängig die Sollwerte eingestellt und/oder angezeigt werden.

Sollwert C1.SP/C2.SP anzeigen und einstellen:

△ Sollwertverstellung starten.

△/▽ Sollwert erhöhen/verringern.

Nach fünf Sekunden wechselt die Anzeige wieder zur unter A3.1 festgelegten Anzeige, vgl. Kapitel 2.7.1. Der Prozessregelantrieb regelt den neu eingestellten Sollwert aus. Wurde anstelle des Werts "==" angewählt, dann ist die Sollwertgrenze erreicht. In diesem Fall wird die Sollwerteinstellung ohne Änderung des Sollwerts abgebrochen.

Sollwerteinstellung abbrechen

 \triangle oder ∇ bis = angezeigt wird.

Nach fünf Sekunden wechselt die Anzeige wieder zur unter A3.1 festgelegten Anzeige, vgl. Kapitel 2.7.1, ohne dass der Sollwert verändert wurde.

- Sollwert C1.SP/C2.SP/vor Vergleicher Regler [1]/vor Vergleicher Regler [2] anzeigen:

CA/PA	Bezeichnung	Wer	Wertebereich			
A2.1	Funktion Taste [Auf]	1:	Sollwert C1.SP anzeigen und einstellen			
		2:	Sollwert C2.SP anzeigen und einstellen			
		3:	Sollwert C1.SP anzeigen			
		4:	Sollwert C2.SP anzeigen			
		5:	Sollwert vor Vergleicher Regler [1] anzeigen			
		6:	Sollwert vor Vergleicher Regler [2] anzeigen			

Funktion [Ab]-Taste

Mit der Taste \bigcirc können konfigurationsabhängig Mess-, Ist- und Sollwerte sowie die Regeldifferenz angezeigt werden:

CA/PA	Bezeichnung	Wer	tebereich
A2.2	Funktion Taste [Ab]	1:	Messwert Al1 anzeigen
		2:	Messwert AI1 nach Funktionalisierung anzeigen
		3:	Messwert Al2 anzeigen
		4:	Messwert AI2 nach Funktionalisierung anzeigen
		5:	Messwert AI3 anzeigen
		6:	Messwert Al3 nach Funktionalisierung anzeigen
		7:	Messwert Al4 anzeigen
		8:	Messwert Al4 nach Funktionalisierung anzeigen
		9:	Istwert vor Vergleicher [1] anzeigen
		10:	Sollwert vor Vergleicher [1] anzeigen
		11:	Regeldifferenz Regler [1] anzeigen
		12:	Istwert vor Vergleicher [2] anzeigen
		13:	Sollwert vor Vergleicher [2] anzeigen
		14:	Regeldifferenz Regler [2] anzeigen
		15:	Sollwert vom Programmgeber

2.7.1 Anzeige

Im Display des Prozessregelantriebs kann konfigurationsabhängig der Istwert vor dem Vergleicher des Reglers [1] oder der Istwert vor dem Vergleicher des Reglers [2] angezeigt werden.

CA/PA	Bezeichnung	Wertebereich
A3.1	Funktion	1: Istwert vor Vergleicher Regler [1]
		2: Istwert vor Vergleicher Regler [2]

3 Zusätzliche Anzeigen und Funktionen in Software TROVIS-VIEW

3.1 Betriebswerte

Im Regelbetrieb zeigt das Display den aktuellen Istwert in °C an.

Weitere Betriebswerte – beispielsweise Informationen zu den Eingängen, zum Istwert, Sollwert und zur Regeldifferenz – können mit der Software TROVIS-VIEW ausgelesen werden.

3.2 Service

Funktionen

Mit den ausführbaren Parametern des Ordners [Funktionen] können folgende Aktionen/Tests durchgeführt werden:

- Initialisierung starten
- Nullpunktabgleich starten
- Reset auslösen
- Werkseinstellung laden
- Anzeige- und Tastentest
- Gerät erkennen
- Laufzeitmessung starten
- Dauertest aktivieren

Handebene

Der Prozessregelantrieb wird in die Handebene versetzt.

Mit der Handebene kann der Prozessregelantrieb über TROVIS-VIEW verfahren werden.

Statusmeldungen

Der Ordner [Statusmeldungen] beinhaltet Informationen zum Betrieb (Betriebsstunden, Geräteinnentemperatur usw.) sowie zu den Antriebs- und Ventilwegen.

Statistik

Im Ordner [Statistik] werden Geräteausfälle, Störungen, Aktionen, Tastenbedienungen und ausgeführte Funktionen gezählt und angezeigt.

3.3 Werkseinstellung

Fehlfunktion durch nicht anwendungsgerechte Konfiguration!

Nach dem Rücksetzen auf Werkseinstellung ist im elektrischen Prozessregelantrieb die Anwendung Festwertregelung Heizen mit einem Sensor vorkonfiguriert.

Konfigurationspunkte und Parameter nach einem Rücksetzen auf Werkseinstellung an die Anwendung anpassen.

4 Modbusliste

Die elektrischen Prozessregelantriebe TROVIS 5724-8 und TROVIS 5725-8 sind in der Firmwareversion 2.1x mit einer integrierten RS-485-Schnittstelle zur Nutzung des Protokolls Modbus RTU ausgestattet. Es ist ein Master-Slave-Protokoll, wobei z. B. eine Leitstation der Master und der Prozessregelantrieb der Slave ist.

Folgende Modbus-Funktionen werden unterstützt:

Code	Modbus-Funktion	Anwendung
1	Read Coils	Zustand mehrerer Digitalausgänge im Bit-Format lesen
3	Read Holding Registers	Mehrere Parameter lesen
5	Write Single Coil	Einzelnen Digitalausgang im Bit-Format schreiben
6	Write Single Register	Einzelnen Parameter wortweise schreiben
15	Write Multiple Coils	Mehrere Digitalausgänge im Bit-Format schreiben
16	Write Multiple Registers	Mehrere Parameter wortweise schreiben

Folgende Modbus-Fehlerantworten kann der elektrische Prozessregelantrieb geben:

Fehlercode	Fehler	Ursache
1	Unzulässige Funktion	Der Funktions-Code wird nicht unterstützt
2	Unzulässige Datenadresse	Eine Registeradresse ist ungültig oder schreibgeschützt
3	Ungültiger Datenwert	Ein in den Daten enthaltener Wert ist unzulässig oder nicht plausibel
4	Slave-Gerätefehler	Während einer Aktion ist ein nicht behebbarer Fehler aufgetreten
6	Slave belegt (Busy)	Der Slave ist beschäftigt und kann die Anfrage nicht annehmen

Im Folgenden werden einige wichtige Datenpunkte aus der Modbus-Datenpunktliste aufgeführt. Die komplette Datenpunktliste ist auf Anfrage erhältlich.

• HINWEIS

Die Daten werden unverlierbar im EEPROM gespeichert. Diese Speicherart hat eine begrenzte Lebensdauer von mindestens 100.000 Schreibzyklen pro Speicheradresse. Werden Konfigurationen und Parameter ausschließlich manuell über die Tasten am Gerät oder über TROVIS-VIEW geändert, so ist ein Überschreiten der maximalen Schreibzyklen-Anzahl nahezu ausgeschlossen. Jedoch ist bei automatischen Parameteränderungen (z. B. über die Modbus-Kommunikation) die maximale Schreibzyklen-Anzahl unbedingt zu beachten und es sind Maßnahmen gegen ein zu häufiges Schreiben der Parameter zu ergreifen.

Modbusliste

	P		Übertragu	ngsbereich	Anzeigebereich		
HR	Bezeichnung	Zugriff	Anfang	Ende	Anfang	Ende	
Gerät	ekenndaten						
1	Gerätetyp	R	5724	5725	5724	5725	
2	Ausführung	R	8	8	8	8	
3	Revision (z. B. Rev 2.00)	R	100	9999	1,00	99,99	
4	Seriennummer Teil 1 (höherwertige 4 Stellen)	R	0	9999	0	9999	
5	Seriennummer Teil 2 (niederwertige 4 Stellen)	R	0	9999	0	9999	
6	Firmwareversion	R	100	9999	1,00	99,99	
7	Firmwareversion freigegeben	R	100	9999	1,00	99,99	
8	Stationsadresse (Freigabe "W" via CL 008)	R	0	255	0	255	
Regel	funktion			,	,		
9	Anlagenkennziffer MO	R	0	99	0	99	
10	Regelungsart M1	R/W	0	9	0	9	
11	Wirkrichtung M2	R/W	0	1	0	1	
Betrie	bswerte Analogeingänge						
12	Messwert Analogeingang II	R	-500	1500	-50,0	150,0	
13	Analogeingang I1 nach Funktionalisierung	R	-500	1500	-50,0	150,0	
14	Messwert Analogeingang 12	R	-500	1500	-50,0	150,0	
15	Analogeingang I2 nach Funktionalisierung	R	-500	1500	-50,0	150,0	
16	Messwert Analogeingang 13	R	-500	1500	-50,0	150,0	
17	Analogeingang 13 nach Funktionalisierung	R	-500	1500	-50,0	150,0	
18	Messwert Analogeingang 14	R	0	1000	0,0	100,0	
19	Analogeingang I4 nach Funktionalisierung	R	-500	1500	-50,0	150,0	
Betrie	bswerte Analogeingänge						
20	Quelle für Stellwert (Regler [])	R	0	9	0	9	
21	YP Stellwert Antrieb	R	0	1000	0,0	100,0	
22	AT Berechneter Hub Antrieb	R	0	1000	0,0	100,0	
23	Status Hub	R	0	4	0	4	
24	Regeldifferenz Stellwert	R	0	1000	0,0	100,0	
Hand	ebene						
25	Externer Hand-Stellwert	R/W	0	1000	0,0	100,0	

			Übertragu	ngsbereich	Anzeigebereich		
HR	Bezeichnung	Zugriff	Anfang	Ende	Anfang	Ende	
26	Regeldifferenz externe Handebene	R	0	1000	0,0	100,0	
Betrie	bswerte Bedienfunktion						
27	Status Bedienfunktion	R	0	11	0	11	
28	Ursache Bedienfunktion	R	0	3	0	3	
29	Sollwert Programmgeber	R	-500	1500	-50,0	150,0	
30	Abgelaufene Zeit Programmgeber	R	0	10080	0	10080	
31	- reserviert - (Abgelaufene Zeit Start-Funktion)	R	0	65535	0	65535	
32	- reserviert - (Abgelaufene Zeit Stopp-Funktion)	R	0	65535	0	65535	
33	– reserviert – (Abgelaufene Zeit Schaltausgang)	R	0	65535	0	65535	
Betrie	ebswerte und Einstellungen Regler [1]						
34	Istwert vor Vergleicher Regler [1] (PV[1])	R	-500	1500	-50,0	150,0	
35	Sollwert vor Vergleicher Regler [1] (SP[1])	R	-500	1500	-50,0	150,0	
36	Regeldifferenz Regler [1] (SP[1] - PV[1])	R	-9999	9999	-999,9	999,9	
37	Stellwert Regler [1] vor Kennlinie Y[1]	R	0	1000	0,0	100,0	
38	Stellwert Regler [1] nach Kennlinie YP[1]	R	0	1000	0,0	100,0	
39	Regeldifferenz Regler [1]	R	0	1	0	1	
40	Aktiver Sollwert Regler [1]	R	0	9	0	9	
41	Sollwert C1.SP	R/W	-500	1500	-50,0	150,0	
42	- reserviert -	R	0	65535	0	65535	
43	- reserviert -	R	0	65535	0	65535	
44	- reserviert -	R	0	65535	0	65535	
45	- reserviert -	R	0	65535	0	65535	
Betrie	bswerte und Einstellungen Regler [2]						
46	Istwert vor Vergleicher Regler [2] (PV[2])	R	-500	1500	-50,0	150,0	
47	Sollwert vor Vergleicher Regler [2] (SP[2])	R	-500	1500	-50,0	150,0	
48	Regeldifferenz Regler [2] (SP[2] – PV[2])	R	-9999	9999	-999,9	999,9	
49	Stellwert Regler [2] vor Kennlinie Y[2]	R	0	1000	0,0	100,0	
50	Stellwert Regler [2] nach Kennlinie YP[2]	R	0	1000	0,0	100,0	
51	Regeldifferenz Regler [2]	R	0	1	0	1	

Modbusliste

	B	- "	Übertragu	ngsbereich	Anzeigebereich		
HR	Bezeichnung	Zugriff	Anfang	Ende	Anfang	Ende	
52	Aktiver Sollwert Regler [2]	R	0	9	0	9	
53	Sollwert C2.SP	R/W	-500	1500	-50,0	150,0	
54	- reserviert -	R	0	65535	0	65535	
55	- reserviert -	R	0	65535	0	65535	
56	- reserviert -	R	0	65535	0	65535	
57	- reserviert -	R	0	65535	0	65535	
Unive	rsaleingang I1						
100	Funktion Universaleingang I1	R/W	0	3	0	3	
Funkti	onalisierung Al1	<u> </u>					
101	Eingangssignal All Punkt 1 (Al1.11)	R/W	-500	1500	-50,0	150,0	
102	Ausgangssignal Al1 Punkt 1 (Al1.O1)	R/W	-500	1500	-50,0	150,0	
103	Eingangssignal A11Punkt 2 (A11.12)	R/W	-500	1500	-50,0	150,0	
104	Ausgangssignal Al1Punkt 2 (Al1.O2)	R/W	-500	1500	-50,0	150,0	
Unive	rsaleingang I2						
105	Funktion Universaleingang I2	R/W	0	3	0	3	
Funkti	onalisierung AI2						
106	Eingangssignal AI2 Punkt 1 (AI2.I1)	R/W	-500	1500	-50,0	150,0	
107	Ausgangssignal Al2Punkt 1 (Al2.O1)	R/W	-500	1500	-50,0	150,0	
108	Eingangssignal Al2 Punkt 2 (Al2.I2)	R/W	-500	1500	-50,0	150,0	
109	Ausgangssignal AI2 Punkt 2 (AI2.O2)	R/W	-500	1500	-50,0	150,0	
Unive	rsaleingang I3						
110	Funktion Universaleingang I3	R/W	0	3	0	3	
Funkti	onalisierung Al3						
111	Eingangssignal AI3 Punkt 1 (AI3.I1)	R/W	-500	1500	-50,0	150,0	
112	Ausgangssignal AI3 Punkt 1 (AI3.O1)	R/W	-500	1500	-50,0	150,0	
113	Eingangssignal AI3 Punkt 2 (AI3.I2)	R/W	-500	1500	-50,0	150,0	
114	Ausgangssignal AI3 Punkt 2 (AI3.O2)	R/W	-500	1500	-50,0	150,0	
Unive	rsaleingang I4						
115	Funktion Universaleingang I4	R/W	0	4	0	4	

Ш	B	"	Übertragu	ngsbereich	Anzeigebereich		
HR	Bezeichnung	Zugriff	Anfang	Ende	Anfang	Ende	
Funkti	ionalisierung AI4						
116	Eingangssignal AI4 Punkt 1 (AI4.I1)	R/W	0	1000	0,0	100,0	
117	Ausgangssignal Al4 Punkt 1 (Al4.O1)	R/W	-500	1500	-50,0	150,0	
118	Eingangssignal AI4 Punkt 2 (AI4.I2)	R/W	0	1000	0,0	100,0	
119	Ausgangssignal AI4 Punkt 2 (AI4.O2)	R/W	-500	1500	-50,0	150,0	
Schalt	tausgang						
120	Funktion Schaltausgang M4	R/W	0	8	0	8	
121	Nachlaufzeit Schaltausgang M4.T	R/W	0	999	0	999	
122	Logik Schaltausgang M5	R/W	0	1	0	1	
Regel	funktion						
123	Anlagenkennziffer MO	R	0	99	0	99	
124	Regelungsart M1	R/W	0	9	0	9	
125	Wirkrichtung M2	R/W	0	1	0	1	
Intern	er Grenzwert LIM1						
126	Quelle Interner Grenzwert LIM1.S	R/W	1	15	1	15	
127	Funktion Interner Grenzwert LIM1.F	R/W	0	2	0	2	
128	Schaltpunkt LIM1.P	R/W	-50	150	-50	150	
129	Hysterese LIM1.H	R/W	5	100	0,5	10,0	
Intern	er Grenzwert LIM2	•					
130	Quelle Interner Grenzwert LIM2.S	R/W	1	15	1	15	
131	Funktion Interner Grenzwert LIM2.F	R/W	0	2	0	2	
132	Schaltpunkt LIM2.P	R/W	-50	150	-50	150	
133	Hysterese LIM2.H	R/W	5	100	0,5	10,0	
Progr	ammgeber						
134	Verhalten nach Programm-Ablauf A0.1	R/W	0	5	0	5	
Konfi	guration Antrieb						
135	Endlagenführung Stange ausgefahren	R/W	0	499	0	49	
136	Endlagenführung Stange eingefahren	R/W	500	1000	50	100	
137	Pausenzeit während Endlagenführung	R/W	0	99	0	99	
138	Nennhub in mm	R	0	999	0,0	99,9	
139	Stellzeit in s	R	0	999	0	99,9	

Modbusliste

		- "	Übertragungsbereich		Anzeigebereich		
HR	Bezeichnung	Zugriff	Anfang	Ende	Anfang	Ende	
140	Totzone (Schaltbereich)	R/W	5	50	0,5	5,0	
141	Signalstörung Funktion A7.1	R/W	0	1	0	1	
142	Fester Stellwert Antrieb A7.YP.ERR	R/W	0	1000	0,0	100,0	
143	Antrieb Nullpunktabgleich A8.1	R/W	0	1	0	1	
144	Antrieb Wiederanlaufbedingung A8.2	R/W	0	2	0	2	
145	Antrieb Blockierschutz A8.3	R/W	0	1	0	1	
146	Kennlinientyp M6	R/W	0	3	0	3	
Einste	llungen Bedienfunktion						
147	Funktion A1.1	R/W	0	4	0	4	
148	Auslöser A1.5	R/W	0	8	0	8	
149	Anfahrzeit nach Start A1.T.ON	R/W	0	999	0	999	
150	Fester Stellwert Antrieb A1.YP.ON	R/W	0	1000	0,0	100,0	
151	Nachlaufzeit nach Stopp A1.T.OFF	R/W	0	999	0	999	
152	Fester Stellwert Antrieb A1.YP.OFF	R/W	0	1000	0,0	100,0	
153	Funktion Taste [Auf] A2.1	R/W	1	6	1	6	
154	Funktion Taste [Ab] A2.2	R/W	1	15	1	15	
155	Funktion Anzeige [XX] A3.1	R/W	1	2	1	2	
Konfig	Konfiguration Regler [1]						
156	Quelle Istwert (Regelgröße) C1.1	R/W	0	4	0	4	
157	Formelparameter C1.a	R/W	-90	990	-9,0	99,0	
158	Formelparameter C1.b	R/W	-90	990	-9,0	99,0	
159	Formelparameter C1.c	R/W	-90	990	-9,0	99,0	
160	Formelparameter C1.d	R/W	-90	990	-9,0	99,0	
161	Formelparameter C1.z	R/W	10	990	1,0	99,0	
162	Quelle Sollwert (Führungsgröße) C1.2	R/W	0	9	0	9	
163	Sollwert C1.SP	R/W	-500	1500	-50,0	150,0	
164	Sollwert-Offset C1.SP.DIF	R/W	-500	1500	-50,0	150,0	
165	Untere Einstellgrenze C1.SP.MIN	R/W	-500	1500	-50,0	150,0	
166	Obere Einstellgrenze C1.SP.MAX	R/W	-500	1500	-50,0	150,0	
167	Formelparameter C1.e	R/W	-90	990	-9,0	99,0	

	Bezeichnung	Zugriff	Übertragungsbereich		Anzeigebereich	
HR			Anfang	Ende	Anfang	Ende
168	Formelparameter C1.f	R/W	-90	990	-9,0	99,0
169	Formelparameter C1.g	R/W	-90	990	-9,0	99,0
170	Formelparameter C1.h	R/W	-90	990	-9,0	99,0
171	Funktion Regeldifferenz C1.3	R/W	0	7	0	7
172	Regelparameter Regler [1] C1.KP	R/W	1	9999	0,1	999,9
173	Regelparameter Regler [1] C1.TN	R/W	0	999	0	999
174	Regelparameter Regler [1] C1.TV	R/W	0	999	0	999
175	Regelparameter Regler [1] C1.Y0	R/W	0	1000	0,0	100,0
176	Funktion Stellwert C1.4	R/W	0	6	0	6
177	Fester Stellwert C1.YP	R/W	0	1000	0	100,0
Konfig	guration Regler [2]					
178	Quelle Istwert (Regelgröße) C2.1	R/W	0	4	0	4
179	Formelparameter C2.a	R/W	-90	990	-9,0	99,0
180	Formelparameter C2.b	R/W	-90	990	-9,0	99,0
181	Formelparameter C2.c	R/W	-90	990	-9,0	99,0
182	Formelparameter C2.d	R/W	-90	990	-9,0	99,0
183	Formelparameter C2.z	R/W	10	990	1,0	99,0
184	Quelle Sollwert (Führungsgröße) C2.2	R/W	0	9	0	9
185	Sollwert C2.SP	R/W	-500	1500	-50,0	150,0
186	Sollwert-Offset C2.SP.DIF	R/W	-500	1500	-50,0	150,0
187	Untere Einstellgrenze C2.SP.MIN	R/W	-500	1500	-50,0	150,0
188	Obere Einstellgrenze C2.SP.MAX	R/W	-500	1500	-50,0	150,0
189	Formelparameter C2.e	R/W	-90	990	-9,0	99,0
190	Formelparameter C2.f	R/W	-90	990	-9,0	99,0
191	Formelparameter C2.g	R/W	-90	990	-9,0	99,0
192	Formelparameter C2.h	R/W	-90	990	-9,0	99,0
193	Funktion Regeldifferenz C2.3	R/W	0	7	0	7
194	Regelparameter Regler [2] C2.KP	R/W	1	9999	0,1	999,9
195	Regelparameter Regler [2] C2.TN	R/W	0	999	0	999
196	Regelparameter Regler [2] C2.TV	R/W	0	999	0	999

Modbusliste

HR	D	7	Übertragungsbereich	Anzeige	bereich	
	Bezeichnung	Zugriff	Anfang	Ende	Anfang	0 100,0
197	Regelparameter Regler [2] C2.Y0	R/W	0	1000	0,0	100,0
198	Funktion Stellwert C2.4	R/W	0	6	0	6
199	Fester Stellwert C2.YP	R/W	0	1000	0,0	100,0

CL	Bezeichnung COILS (1 Bit)	Zugriff	Status 0	Status 1			
Betriebszustände							
1	Betriebsstörung	R	Nein	Ja			
2	Interne Handebene am Antrieb eingeschaltet	R	Nein	Ja			
3	Freigabe externe Handebene Hubverstellung	R/W	Nein	Ja			
Digito	Digitaleingänge						
4	Zustand Digitaleingang 1	R	Aus	Ein			
5	Zustand Digitaleingang 2	R	Aus	Ein			
6	Zustand Digitaleingang 3	R	Aus	Ein			
7	Zustand Digitaleingang 4	R	Aus	Ein			
Gren	zwerte						
8	Zustand interner Grenzwert 1	R	Aus	Ein			
9	Zustand interner Grenzwert 2	R	Aus	Ein			
Endso	halter						
10	Zustand Endschalter Stange eingefahren	R	Aus	Ein			
11	Zustand Endschalter Stange ausgefahren	R	Aus	Ein			
Schal	Schaltausgang						
12	Logischer Zustand Schaltausgang	R	Aus	Ein			
13	Schaltkontakt Schaltausgang	R	Aus	Ein			
14	Freigabe Handebene Schaltausgang	R/W	Aus	Ein			
15	Handebene Logischer Zustand Schaltausgang	R/W	Aus	Ein			
Ausnahmefehler							
16	Signalstörung Analogeingang 1	R	Nein	Ja			
17	Signalstörung Analogeingang 2	R	Nein	Ja			
18	Signalstörung Analogeingang 3	R	Nein	Ja			

CL	Bezeichnung COILS (1 Bit)	Zugriff	Status 0	Status 1				
19	Beide Endschalter aktiv	R	Nein	Ja				
20	Abbruch Stangennachführung einfahren	R	Nein	Ja				
21	Abbruch Stangennachführung ausfahren	R	Nein	Ja				
22	Übertemperatur im Gerät	R	Nein	Ja				
23	Keine Initialisierung ausgeführt	R	Nein	Ja				
EEPRC	EEPROM-Fehler							
24	EE-Fehler Grundeinstellung Zustand	R	Nein	Ja				
25	EE-Fehler Grundeinstellung Ursache	R	Nein	Ja				
26	EE-Fehler Konfiguration Zustand	R	Nein	Ja				
27	EE-Fehler Konfiguration Ursache	R	Nein	Ja				
28	EE-Fehler Offset Zustand	R	Nein	Ja				
29	EE-Fehler Offset Ursache	R	Nein	Ja				
30	EE-Fehler Kalibrierung Zustand	R	Nein	Ja				
31	EE-Fehler Kalibrierung Ursache	R	Nein	Ja				
32	EE-Fehler Seriennummer Zustand	R	Nein	Ja				
33	EE-Fehler Seriennummer Ursache	R	Nein	Ja				
34	EE-Fehler Fertigungsparameter Zustand	R	Nein	Ja				
35	EE-Fehler Fertigungsparameter Ursache	R	Nein	Ja				
36	EE-Fehler Laufzeiten Zustand	R	Nein	Ja				
37	EE-Fehler Laufzeiten Ursache	R	Nein	Ja				
38	EE-Fehler Diagnose Statusmeldung Zustand	R	Nein	Ja				
39	EE-Fehler Diagnose Statusmeldung Ursache	R	Nein	Ja				
40	EE-Fehler Diagnose Statistik Zustand	R	Nein	Ja				
41	EE-Fehler Diagnose Statistik Ursache	R	Nein	Ja				
Aktion	Aktionen							
42	Nullpunktabgleich aktiv	R	Nein	Ja				
43	Initialisierung aktiv	R	Nein	Ja				
44	Blockierschutz aktiv	R	Nein	Ja				
45	Dauertest aktiv	R	Nein	Ja				

5 Verwendete Abkürzungen

Al Analogeingang (Analog Input)
DI Digitaleingang (Digital Input)
SP Sollwert vor Vergleicher (Set Point)

C1.SP Sollwert Regler [1] (Controller 1 Set Point)
C2.SP Sollwert Regler [2] (Controller 2 Set Point)

C1.SP.DIF Sollwert Offset Regler [1] (Controller 1 Set Point Difference)
C2.SP.DIF Sollwert Offset Regler [2] (Controller 2 Set Point Difference)
C1.SP.MAX Sollwert obere Einstellgrenze (Controller 1 Set Point Maximum)
C2.SP.MAX Sollwert obere Einstellgrenze (Controller 2 Set Point Maximum)
C1.SP.MIN Sollwert untere Einstellgrenze (Controller 1 Set Point Minimum)
C2.SP.MIN Sollwert untere Einstellgrenze (Controller 2 Set Point Minimum)

PV Istwert vor Vergleicher (Process Variable)

e Regeldifferenz Y Stellwert

YP Stellwert Antrieb

C1.YP Fester Stellwert Antrieb 1
C2.YP Fester Stellwert Antrieb 2

LIM1 interner Grenzwert 1 (Limit switch 1)
LIM2 interner Grenzwert 2 (Limit switch 2)

KP Proportionalbeiwert

TN Nachstellzeit
TV Vorhaltzeit
Y0 Arbeitspunkt
HA Handebene

