Media
Liquid Level, Differential Pressure and Flow Meters

Analog and Digital Indicating Units and Transmitters for Liquid Level Measurement · Differential Pressure Measurement · Flow Measurement

Associated Data Sheets
T 9519 EN, T 9520 EN, T 9527 EN, T 9550 EN, T 9555 EN

Edition November 2006
Information Sheet T 9500 EN
Flow measurement using the differential pressure method

In combination with a differential pressure meter from the Media series, the differential pressure method is preferably used for continuous flow rate measurement of liquids, gases and vapors. It has the advantage that there are no moving parts in the process medium which could affect the flow rate.

When the process medium flows through a pipe narrowed down by the orifice plate assembly, the flow rate increases at the restriction. The created differential pressure is used to measure the flow rate.

SAMSON offers orifice plate assemblies in various versions as accessories.

Refer to Data Sheet T 9550 EN for further details.

Questionnaire FB 9500 EN is available to specify the data required to size the orifice plate assembly.

SAMSON uses the specifications to size the orifice plate assembly correctly when processing the orders.

Fig. 1 - Orifice plate assemblies
Intelligent Tank Management

The Media 6 Digital Transmitter used in combination with a compatible hardware and software package forms the MTM 32 Media Tank Management System.

- MTM 32 Media Tank Management System
 with MTM 32 hardware and MTM 98 software

The tank monitoring system is especially suitable for use in a centralized liquid gas supply system where gases are stored in various separate locations. The consumer benefits from quick and convenient information about the current level of each tank, which facilitates a sufficient and cost-efficient supply. Additionally, digital limit values can be logged and issued as control signals (e.g. for alarms, initiate tank changeover, etc.).

For the gas supplier, it means that logistics can be scheduled more accurately.

Special features
- Media 6 device functions as a liquid level measuring and indicating unit on site; continuous tank monitoring by measuring the liquid level and pressure
- MTM 32 hardware modules at the point of measurement to register and exchange data over a telephone line or radio data transmission; type of transmission configurable (analog, ISDN or GSM)
- MTM 32 hardware modules linked to a PC at the central logistics control station using MTM 98 software
- Administration and monitoring of communications modules at the point of measurement; data polling by operator or automatically at regular intervals; automatic remote data transmission in the event of limit alarm
- Data processing, protocols and analysis

Fig. 2 shows how remote data transmission works using MTM 32 Media Tank Management System.

For further details, refer to Data Sheet T-MTM 32 from SAMSOMATIC Automationssysteme GmbH.
Design and principle of operation

Media Series

The instruments consist of a **differential pressure cell** functioning according to the deflection principle and an **indicating unit**. A **valve block** - a combination of three valves and a test connection - is available as an option. Additionally, the process lines for +/- pressure must be connected.

Media 05, 5 Analog Measuring and Indicating Devices

The differential pressure cell contains a measuring diaphragm which is designed for measuring spans up to max. 3600 mbar.

The differential pressure \(\Delta p = p_1 - p_2 \) creates a force at the measuring diaphragm which is balanced by the range spring. The deflection, which is proportional to the differential pressure, is transmitted to the pointer mechanism via the adjustable coupling.

In the version with limit switches, the metal tags to the assigned proximity switches A1 and A2 depending on the pointer’s movement. If the metal tag is in the pick-up field of the assigned proximity switch, it is highly resistive (contact open). If it leaves the pick-up field, it becomes lowly resistive (contact open). The function corresponds to that of a mechanical switch contact. The limit signals are suitable for operating a downstream switching amplifier (transistor relay).

Digital Transmitter Media 6 with LCD

The differential pressure cell with a measuring diaphragm and range springs designed to correspond to the span measures the pressure.

The differential pressure \(\Delta p = p_1 - p_2 \) causes a shift in the axis of the measuring diaphragm which is supported by the range springs. The change in travel which is proportional to the differential pressure is led to the displacement sensor which converts the travel into an electric signal. The signal is compared with data stored in the FRAM and processed in the microprocessor which controls the LCD display and the D/A converter for the output signal. This output signal, which is proportional to the measured value, is issued as a load-independent 4 to 20 mA DC signal at connector A.

At connector B, two software limit switches for min. alarm (e.g. minimum liquid level) and max. alarm (e.g. maximum liquid level) are led to the connection to the switching amplifier according to IEC 60947-5-6. In the case of Media 6 Z, a software limit switch (alarm 1) and a pulse output proportional to the quantity (in place of alarm 2) for an external meter are used.

The RS-232 interface allows the device to be configured with a special memory pen or directly via PC with SAMSON’s TROVIS-VIEW Configuration and Operator Interface. The user-specific data are saved in the FRAM. Operating data - type of gas, gas density, geometrical shape of the tank and location of the min./max. alarms - can also be programmed.

These specifications enable the conversion of the differential pressure into values proportional to the tank contents, in order to display and issue them as a 4 to 20 mA DC signal.

On remote transmission of all the relevant data of the Media 6, the data to be analyzed are sent via modem and phone line to a remote PC. The hardware and software required for remote data transmission is included in the SAMSON product range.
Liquid Level, Differential Pressure and Flow Meters

The liquid level, differential pressure and flow meters of the SAMSON Media Series are described below.

Ranges of application
- Liquid level measurement in storage tanks, pressure vessels, steam boilers and liquid gas tanks
- Differential pressure measurement in industrial plants and buildings, e.g. measuring the differential pressure between flow and return pipes; measuring the pressure drop in filters, valves and restrictions located in the bypass circuit of pumps or air compressors
- Flow measurement according to the differential pressure method

Special features
- Measuring spans from 40 to 3600 mbar at static pressures up to 40 bar
- dp-cell with spring-loaded diaphragm and easy-to-exchange range spring, overloadable on one side up to the permissible static pressure of 50 bar
- Compact, service-friendly version with an especially low overall weight
- Indicating unit suitable for field mounting (degree of protection IP 54) and for panel mounting
- Zero point adjustment from the front
- Version with inductive limit switches to operate connected control and alarm equipment
- Two-wire connection for standard 4 to 20 mA signal

Media 5 · Media 05
- Measuring and indication of differential pressure and measured variables derived from it
- dp-cell with brass housing PN 50 and ECO measuring diaphragm
- Measuring spans in the range 0 to 40 to 0 to 3600 mbar
- Directly attachable valve block with test connection (accessories)

Media 5 (05) · Differential pressure and flow meter · Indicating unit Ø 160 (85) mm
- Suitable for gases or liquids
- Limit switch with inductive alarm contacts

Technical data

<table>
<thead>
<tr>
<th>Media 5</th>
<th>Data Sheet T 9519 EN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal pressure</td>
<td>PN 50, overloadable on one side up to 50 bar</td>
</tr>
<tr>
<td>Measuring span in the range</td>
<td>40 to 3600 mbar</td>
</tr>
<tr>
<td>Characteristic</td>
<td>Reading linear to differential pressure, scales selectable</td>
</tr>
<tr>
<td>Max. perm. ambient temperature</td>
<td>−40 to +80 °C</td>
</tr>
<tr>
<td>Degree of protection (DIN 40050)</td>
<td>IP 54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Media 05</th>
<th>Data Sheet T 9520 EN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit switch</td>
<td>Max. 3 alarm contacts with LEDs SJ3.5N-LED</td>
</tr>
<tr>
<td>Proximity switch</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4 · Transmitters from Media 05 and Media 5 attached to a valve block, pressure gauge and screw joints
Media 6 · Media 6 Z

Media 6 · Indicating digital transmitter for differential pressure
- LCD display Ø 90 mm
- Suitable for gases and liquids in cryogenic service
- Microprocessor-controlled two-wire transmitter with a digital display and RS-232 interface
- Two-wire connection for standard 4 to 20 mA DC signal
- Two adjustable software limit switches acc. to NAMUR
- Media 6 Z: Pulse output for an external meter

Technical data

<table>
<thead>
<tr>
<th>Nominal pressure</th>
<th>PN 50, overloadable on one side up to 50 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring span in the range</td>
<td>40 to 3600 mbar</td>
</tr>
<tr>
<td>Characteristic</td>
<td>Reading linear to tank contents</td>
</tr>
<tr>
<td>Interface</td>
<td>RS-232</td>
</tr>
<tr>
<td>Output</td>
<td>4 to 20 mA</td>
</tr>
<tr>
<td>Max. perm. ambient temperature</td>
<td>−40 to +80 °C</td>
</tr>
<tr>
<td>Degree of protection (DIN VDE 0470)</td>
<td>IP 65</td>
</tr>
<tr>
<td>Limit switches</td>
<td>2 software limit switches according to NAMUR and EN 60947-5-6</td>
</tr>
</tbody>
</table>

Tank management with Media 6

MTM 32 Media Tank Management System from SAMSOMATIC Automationssysteme GmbH has been especially designed for use with Media 6 devices as liquid level sensors for logging and remote data transmission of tank data.

- MTM 32 hardware and MTM 98 software

The signals, which are proportional to the tank contents, are transmitted via phone line (analog/digital) or radio signals from the tank farm to the control station where they are analyzed.

Liquids, gases and vapors are suitable process media for use in the energy sector, the food and beverage industries as well as the chemical and pharmaceutical industries.

Media tank management

<table>
<thead>
<tr>
<th>Technical data</th>
<th>Data Sheet T-MTM 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td>MTM 32</td>
</tr>
<tr>
<td>Remote data transmission</td>
<td>Analog, ISDN or GSM</td>
</tr>
<tr>
<td>8 analog inputs</td>
<td>0 (4) to 20 mA</td>
</tr>
<tr>
<td>11 (max. 16) digital inputs</td>
<td>24 V DC</td>
</tr>
<tr>
<td>2 digital outputs</td>
<td>24 V DC, max. 0.5 A</td>
</tr>
<tr>
<td>max. 16 digital outputs</td>
<td>24 V DC, max. 20 mA</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>13 to 30 V DC</td>
</tr>
<tr>
<td>Device interface</td>
<td>RS-232</td>
</tr>
<tr>
<td>Perm. ambient temperature range</td>
<td>−20 to +70 °C</td>
</tr>
<tr>
<td>Degree of protection in cabinet</td>
<td>IP 54</td>
</tr>
</tbody>
</table>

MTM 98 software allows inventory and schedule management of several storage tanks including alarm functions.
Typical applications

Fig. 7 · Typical applications

<table>
<thead>
<tr>
<th>Accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories especially designed for the Media series are available from SAMSON:</td>
</tr>
<tr>
<td>Venting screws · Mounting parts for 2” pipe or wall mounting</td>
</tr>
<tr>
<td>Screw connection kits · Retrofit limit switches for Media 5 · Isolating switch amplifier · Type 5024-1 Power Supply and Indicating Unit · Pressure sensor</td>
</tr>
<tr>
<td>More information can be found in Data Sheet T 9555 EN.</td>
</tr>
</tbody>
</table>
Commonly used units and terms

Conversion table for units of pressure

Pressure (p) is described as the force (F) exerted per unit area (A):

\[p = \frac{F}{A} \]

Table 1 shows the factors used to convert units still commonly used, e.g. bar, psi, Torr and mm WC (kp/m²) into the SI unit Pa (see DIN 1314).

Pressure terminology

Table 1 - Conversion factors

<table>
<thead>
<tr>
<th>Unit</th>
<th>bar</th>
<th>1 Pa = 1 N/m²</th>
<th>psi</th>
<th>1 Torr = 1 mm Hg</th>
<th>1 mm WC = 1 kp/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>bar</td>
<td>1</td>
<td>1 x 10^5</td>
<td>14.5</td>
<td>750</td>
<td>10.2 x 10^3</td>
</tr>
<tr>
<td>1 Pa = 1 N/m²</td>
<td>0.07</td>
<td>6.9 x 10^3</td>
<td>0.145 x 10^-3</td>
<td>7.5 x 10^-3</td>
<td>0.102</td>
</tr>
<tr>
<td>psi</td>
<td>1.33 x 10^-3</td>
<td>133.33</td>
<td>19.3 x 10^-3</td>
<td>1</td>
<td>13.6</td>
</tr>
<tr>
<td>1 Torr = 1 mm Hg</td>
<td>9.81 x 10^-5</td>
<td>9.81</td>
<td>1.42 x 10^-3</td>
<td>735 x 10^-3</td>
<td>1</td>
</tr>
<tr>
<td>1 mm WC = 1 kp/m²</td>
<td>9.81 x 10^-5</td>
<td>9.81</td>
<td>1.42 x 10^-3</td>
<td>735 x 10^-3</td>
<td>1</td>
</tr>
</tbody>
</table>

The millibar is commonly defined as one thousandth of a bar (1 mbar = 10^-3 bar).

The SI unit of pressure is the Pascal (abbreviation Pa)

1 Pa = 1 N/m²
1 bar = 10^5 Pa

The following terms - often used in connection with the Media series - are briefly explained.

Internal state variable
Those physical variables (pressure, temperature, humidity, composition), which determine the state of the process medium.

Process medium
The medium whose flow rate, pressure or differential pressure is to be measured.

Orifice plate assembly
A restriction which creates a differential pressure of the process medium in the pipeline to measure the flow rate.

Flow
The medium flowing through a cross-section is measured in time (e.g. flow rate in m³/h; mass flow in kg/h).

Measuring range
The range between lower range and upper range values of the measured variable within which measurements can be made with the specified accuracy.

Measuring span
The difference between the lower range and the upper range values.

Lower range value
The lowest value of the input variable at which the output variable has its initial value.

Upper range value
The highest value of the input variable at which the output variable has its final value.

Point of measurement
The point of a control loop at which a variable is measured.

Limit of error
The maximum error over the entire scale or range of use under specific conditions.

Operating status
The state of the process medium at the point of measurement (tag) during operation.

Nominal pressure
Largest operating pressure (static pressure), which may be applied to both sides of the measuring chamber of the transmitter at the same time.

Absolute pressure
Measured above total vacuum or zero absolute. Zero absolute represents total lack of pressure.

Differential pressure \(\Delta p \)
Difference between two pressures \(p_1 \) and \(p_2 \)
\[\Delta p = p_1 - p_2 \]

Gauge pressure
Difference \(p_e \) between absolute pressure \(p_{abs} \) and existing atmospheric pressure \(p_{amb} \)
\[p_e = p_{abs} - p_{amb} \]

Specifications subject to change without notice.